AQA Maths Further Pure 3 Mark Scheme Pack

2006-2015

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1(a)	$(m+1)^2 = -1$	M1		Completing sq or formula
	$m = -1 \pm i$	A1	2	
(b)(i)	CF is $e^{-x}(A\cos x + B\sin x)$	M1		If <i>m</i> is real give M0
	$\{ \text{or } e^{-x}A \cos(x+B) $	A1√		On wrong <i>a</i> 's and <i>b</i> 's but roots must be
	but not $Ae^{(-1+i)x} + Be^{(-1-i)x}$			complex.
	{P.Int.} try $v = px + q$	M1		OE
	2n+2(nx+a) = 4x	A1		
	$p = 2 \qquad q = -2$	A1√		On one slip
	$\frac{P}{GS} = \frac{2}{v} = e^{-x}(A\cos x + B\sin x) + 2x - 2$	B1√	6	Their CF + their PI with two arbitrary
				constants.
(ii)	$x=0, y=1 \Rightarrow A=3$	B1√		Provided an M1gained in (b)(i)
	$y'(x) = -e^{-x}(A\cos x + B\sin x) +$	M1		Product rule used
	$+ e^{-x}(-A\sin x + B\cos x) + 2$	A1√		
	$y'(0) = 2 \Longrightarrow 2 = -A + B + 2 \Longrightarrow B = 3$	A1√`		Slips
	$y = 3e^{-x}(\cos r + \sin r) + 2r - 2$		4	
	$\frac{y - 5c}{100} (\cos x + \sin x) + 2x - 2$ Total		12	
2(a)	. 1 . 1	M1		Reasonable attempt at parts
	$\int xe^{-2x}dx = -\frac{1}{2}xe^{-2x} - \int -\frac{1}{2}e^{-2x}dx$	A1		
	5 2 5 2			
	$=\frac{1}{1}e^{-2x}$ $\frac{1}{1}e^{-2x}$ (1.2)			
	$\frac{xe}{2} = \frac{e}{4} \{+c\}$	AI√		Condone absence of $+c$
	$a \qquad 1 \qquad 1 \qquad 1$			
	$\int x e^{-2x} dx = \frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a} - (0 - \frac{1}{4})$	M1		$\mathbf{F}(a) - \mathbf{F}(0)$
	0 2 4 4			
	$=\frac{1}{2}-\frac{1}{2}ae^{-2a}-\frac{1}{2}e^{-2a}$	A 1	5	
	4 2 4	AI	2	
(b)	$\lim_{a^k e^{-2a} = 0}$	D1	1	
	$a \rightarrow \infty$	BI	1	
	° =			
(c)	$\int_{a} x e^{-2x} dx$			
	0 lim 1 1 1	M1		If this line as is missing than $0/2$
	$= \frac{1111}{\left\{\frac{1}{4} - \frac{1}{2}ae^{-2a} - \frac{1}{2}e^{-2a}\right\}}$	IVIII		If this line of is missing then 0/2
	$a \rightarrow \infty 4 2 4$			
	$ =\frac{1}{2}-0-0=\frac{1}{2}$		2	On and 1144.2 - 41/422 - 41/1
	4 4	AI√	2	On candidate s 1/4° in part (a). B1 must have been earned
	Tatal		8	
	I ULAI		U	

Q	Solution	Marks	Total	Comments
3(a)	$y = x^3 - x \Rightarrow y'(x) = 3x^2 - 1$	B1		Accept general cubic.
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 3x^2 - 1 + \frac{2x(x^3 - x)}{x^2 - 1}$	M1		Substitution into LHS of DE
	$= 3x^{2} - 1 + \frac{2x^{2}(x^{2} - 1)}{x^{2} - 1} = 5x^{2} - 1$	A1	3	Completion. If using general cubic all unknown constants must be found
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}\left[(x^2-1)y\right] = 2xy + (x^2-1)\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1		
	Differentiating $(x^2 - 1)y = c$ wrt x			SC Differentiated but not implicitly
	leads to $2xy + (x^2 - 1)\frac{dy}{dx} = 0$			give max of 1/3 for complete solution
	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a soln. of			
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 0$	A1	3	Be generous
(c)	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a soln with one arb.			
	constant of $\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 0$			
	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a CF of the DE			
	GS is CF + PI	M1		Must be using 'hence'; CF and PI
	$y = \frac{c}{r^2 - 1} + x^3 - x$	A1	2	tunctions of x only CSO
	$\lambda = 1$			Must have explicitly considered the link between one arbitrary constant and the GS of a first order differential equation.
	Total		8	

MFP3	MFP3				
Q	Solution	Marks	Total	Comments	
4(a) (b)(i)	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 \dots$ f (x) = e ^{sin x} \Rightarrow f(0) = 1	B1 B1	1		
	$f'(x) = \cos x e^{\sin x}$ $\Rightarrow f'(0) = 1$ $f''(x) = -\sin x e^{\sin x} + \cos^2 x e^{\sin x}$	M1A1		Product rule used	
	f''(0) = 1 Maclaurin f (x)= f(0)+xf'(0)+ $\frac{x^2}{2}$ f''(0) so 1 st three terms are 1 + x + $\frac{1}{2}x^2$	A1	6	CSO AG	
(ii)	$f'''(x) = \cos x(\cos^2 x - \sin x) e^{\sin x} +$ + {2cosx(-sinx)-cos x} e^{\sin x}	M1A1			
	$f''(0) = 0$ so the coefficient of x^3 in the series is zero	A1	3	CSO AG SC for (b): Use of series expansionsmax of 4/9	
(c)	$\sin x \approx x.$	B1		Ignore higher power terms in sinx expansion	
	$\frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = \frac{-\frac{1}{3}x^3 + o(x^4)}{x^3}$	M1 A1		Series from (a) & (b) used Numerator kx^3 (+)	
	$= \frac{-\frac{1}{3} + o(x)}{1 + o(x^2)}$			Condone if this step is missing	
	$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = -\frac{1}{3}$	A1√	4	On candidate's x^3 coefficient in (a) provided lower powers cancel	
	Total		14		

5

	Solution	Morke	Total	Commonts
Q	Solution	WIATKS	Total	Comments
5(a)(i)	$y(1.1) = y(1) + 0.1[1\ln 1 + 1/1]$	M1A1		
	= 1+0.1 = 1.1	A1	3	
(ii)	y(1.2) = y(1) + 2(0.1)[f(1.1, y(1.1)]]	M1A1		
	$\dots = 1 + 2(0.1)[1.1\ln 1.1 + (1.1)/1.1]$	A1√		On answer to (a)(i)
	= 1+0.2×1.104841198			
	= 1.22096824 = 1.221 to 3dp	A1	4	САО
(b)(i)	IF is $e^{\int -\frac{1}{x} dx}$	241		$\int \frac{1}{x} dx$
		MI		Condone e^{-x} for M mark
	$= e^{-\ln x}$	A1		
	$= e^{\ln x^{-1}} = x^{-1} = \frac{1}{x}$	A1	3	AG (be convinced) (b)(i) Solutions using the printed answer must be convincing before any marks are awarded
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{x}\right) = \ln x$	M1A1		
	$\frac{y}{x} = \int \ln x dx = x \ln x - \int x \left(\frac{1}{x}\right) dx$	M1		Integration by parts for $x^k \ln x$
	y .			
	$\frac{-}{x} = x \ln x - x + c$	A1		Condone missing <i>c</i> .
	$y(1) = 1 \Longrightarrow 1 = \ln 1 - 1 + c$	m1		Dependent on at least one of the two previous M marks
	$\Rightarrow c = 2 \Rightarrow y = x^2 \ln x - x^2 + 2x$	A1	6	OE eg $\frac{y}{x} = x \ln x - x + 2$
(iii)	<i>y</i> (1.2) =1.222543= 1.223 to 3dp	B1	1	
	Total		17	

MFP3				
Q	Solution	Marks	Total	Comments
6(a)	$x^{2} + y^{2} - 12y + 36 = 36$ $r^{2} - 12r\sin\theta + 36 = 36$	M1 M1 m1		Use of $y = r \sin \theta$ ($x = r \cos \theta$ PI) Use of $x^2 + y^2 = r^2$
	$\Rightarrow r = 12\sin\theta$	A1	4	CSO AG
(b)	Area = $\frac{1}{2}\int (2\sin\theta + 5)^2 d\theta$.	M1		Use of $\frac{1}{2}\int r^2 d\theta$.
	= $\frac{1}{2} \int_{0}^{2\pi} (4\sin^2\theta + 20\sin\theta + 25) d\theta$	B1 B1		Correct expn. of $(2\sin\theta+5)^2$ Correct limits
	$= \frac{1}{2} \int_{0}^{2\pi} (2(1 - \cos 2\theta) + 20\sin \theta + 25) d\theta$	M1		Attempt to write $\sin^2 \theta$ in terms of $\cos 2\theta$.
	$= \frac{1}{2} [27\theta - \sin 2\theta - 20\cos\theta] \frac{2\pi}{0}$ $= 27\pi.$	A1√ A1	6	Correct integration ft wrong coeffs
(c)	At intersection $12\sin\theta = 2\sin\theta + 5$	M1		OE eg $r = 6(r - 5)$
	$\Rightarrow \sin\theta = \frac{5}{10}$	A1		OE eg $r = 6$
	Points $\left(6, \frac{\pi}{6}\right)$ and $\left(6, \frac{5\pi}{6}\right)$ <i>OPMQ</i> is a rhombus of side 6	A1		OE Or two equilateral triangles of side 6
	Area = $6 \times 6 \times \sin \frac{2\pi}{3}$ oe	M1 A1		Any valid complete method to find the area (or half area) of quadrilateral.
	$= 18\sqrt{3}$	Al	6	Accept unsimplified surd
	Total		16	
	Total		75	

Extra notes:

The SC for Q4

$$e^{\sin x} = 1 + \left(x - \frac{x^3}{3!} \dots\right) + \frac{1}{2!} \left(x - \frac{x^3}{3!} \dots\right)^2 + \frac{1}{3!} \left(x - \frac{x^3}{3!} \dots\right)^3 \dots$$

M1 for 1st 3 terms ignoring any higher powers than those shown.

A1 for all 4 terms (could be treated separately ie last term often only comes into (b)(ii)

 $= 1 + x - \frac{x^{3}}{6} + \frac{1}{2}(x^{2} -) + \frac{1}{6}(x^{3} -)$ = $1 + x + \frac{1}{2}x^{2}$ A1 (be convinced.....ignore any powers of x above power 2)

Coefficient of x^3 : $-\frac{x^3}{6} + \frac{1}{6}x^3 = 0$ A1 (be convinced.....ignore any powers of x above power 3)

Quite often the 2nd A mark is awarded before the 1st A1

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a)	$y = 2x + \sin 2x \Longrightarrow y' = 2 + 2\cos 2x$			
	\Rightarrow y" = -4 sin 2x	M1 A1		Need to attempt both y' and y''
	$-4\sin 2x - 5(2 + 2\cos 2x) + 4(2x + \sin 2x) =$			
	$8x - 10 - 10\cos 2x$	A1	3	CSO AG Substitute. and confirm correct
			_	
(b)	Auxiliary equation $m^2 - 5m + 4 = 0$	M1		
	m = 4 and 1	A1		
	CF: $A e^{4x} + B e^{x}$	M1		
	GS: $y = A e^{4x} + B e^{x} + 2x + \sin 2x$	B1√	4	Their CF + $2x + \sin 2x$
(c)	$x = 0, y = 2 \Longrightarrow 2 = A + B$	B1√		Only ft if exponentials in GS
	$x = 0, y' = 0 \Longrightarrow 0 = 4A + B + 4$	B1√		Only ft if exponentials in GS and
				differentiated four terms at least
	Solving the simultaneous equations	M1		
	gives $A = -2$ and $B = 4$	A1	4	
	$y = -2e^{x} + 4e^{x} + 2x + \sin 2x$		11	
2 (a)			11	
2(a)	$v_1 = 2 + 0.1 \times \left \frac{1^2 + 2^2}{1^2 + 2^2} \right $	M1 A1		
		1411 7 11		
	$= 2 + 0.1 \times 2.5 = 2.25$	A1	3	
(b)	$k_1 = 0.1 \times 2.5 = 0.25$	M1		
		A1√		PI ft from (a)
	$k_2 = 0.1 \times f(1.1, 2.25)$	M1		
	$\dots = 0.1 \times 2.53434 = 0.2534(34)$	A1√		PI
	$y(1.1) = y(1) + \frac{1}{2} [0.25 + 0.253434]$	m1		
	= 2.2517 to 4dp	A1√	6	If answer not to 4dp withhold this mark
	Total		9	*
3(a)	$IF ic a \int \cot x dx$	M1		
	$ = e^{\ln \sin x} $	Δ1		
	= c = sin r	A1 A1	3	AG
(b)	d .		5	
(~)	$\frac{d}{dx}(y\sin x) = 2\sin x\cos x$	M1 A1		
	un l			
	$y\sin x = \int \sin 2x dx$	M1		Method to integrate 2sinxcosx
	2			
	$v\sin x = -\frac{1}{\cos 2x} + c$	4.1		
	2	AI		OE
	$y = 2$ when $x = \frac{\pi}{2} \Rightarrow$			
	2			
	$2\sin\frac{\pi}{2} = -\frac{1}{\cos\pi} + c$	m1		Depending on at least one M
	2 2			
	$c = \frac{3}{2} \Rightarrow y \sin x = \frac{1}{2}(3 - \cos 2x)$	Δ 1	6	OF an usin $r = \sin^2 r \pm 1$
		AI	0	$OE cg y \sin x - \sin x + 1$
	Total		9	

MFP3 (cont)				
Q	Solution	Marks	Total	Comments
4(a)	Area = $\frac{1}{2}\int 36(1-\cos\theta)^2 d\theta$	M1		use of $\frac{1}{2}\int r^2 d\theta$
	$\dots = \frac{1}{2} \int_{0}^{2\pi} 36(1 - 2\cos\theta + \cos^2\theta) \mathrm{d}\theta$	B1 B1		for correct explanation of $[6(1-\cos\theta)]^2$ for correct limits
	$=9\int_{0}^{2\pi} 2-4\cos\theta + (\cos 2\theta + 1) d\theta$	M1		Attempt to write $\cos^2 \theta$ in terms of $\cos 2\theta$.
	$= \left[27\theta - 36\sin\theta + \frac{9}{2}\sin 2\theta\right]_0^{2\pi}$	A1√		Correct integration; only ft if integrating $a + b\cos\theta + c\cos2\theta$ with non-zero a, b, c .
	$= 54 \pi$	A1	6	CSO
(b)(i)	$x^2 + y^2 = 9 \Longrightarrow r^2 = 9$	B1		PI
	$A \& B: 3 = 6 - 6\cos\theta \Longrightarrow \cos\theta = \frac{1}{2}$	M1		
	Pts of intersection $\left(3, \frac{\pi}{3}\right)$; $\left(3, \frac{5\pi}{3}\right)$	A1 A1√	4	OE (accept 'different' values of θ not in the given interval)
(ii)	Length $AB = 2 \times r \sin \theta$	M1		
	$\dots = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$	A1	2	OE exact surd form
	Total		12	
5(a)	$\Rightarrow \lim_{a \to \infty} \left(\frac{3 + \frac{2}{a}}{2 + \frac{3}{a}} \right) = \frac{3 + 0}{2 + 0} = \frac{3}{2}$	M1 A1	2	
(b)	$\int_{1}^{\infty} \frac{3}{(3x+2)} - \frac{2}{2x+3} \mathrm{d}x$			
	$= \left[\ln(3x+2) - \ln(2x+3)\right]_{1}^{\infty}$	M1 A1		$a\ln(3x+2) + b\ln(2x+3)$
	$= \left\lfloor \ln \left(\frac{3x+2}{2x+3} \right) \right\rfloor_{1}$	m1		
	$= \ln\left\{\lim_{a\to\infty}\left(\frac{3a+2}{2a+3}\right)\right\} - \ln 1$	M1		
	$= \ln \frac{3}{2} - \ln 1 = \ln \frac{3}{2}$	A1	5	CSO
	Total		7	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$u = \frac{dy}{dt} + 2y \implies \frac{du}{dt} = \frac{d^2y}{dt} + 2\frac{dy}{dt}$	M1		2 terms correct
	$u = \frac{1}{dx} + \frac{2y}{dx} = \frac{1}{dx} + \frac{2y}{dx} = \frac{1}{dx} + \frac{2y}{dx} + 2$	AI		
	LHS of DE $\Rightarrow \frac{du}{dx} - 2\frac{dy}{dx} + 4\frac{dy}{dx} + 4y$			
	LHS: $\frac{\mathrm{d}u}{\mathrm{d}x} + 2(u - 2y) + 4y$	M1		Substitution into LHS of DE as far as no derivatives of y
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \mathrm{e}^{-2x}$	A1	4	CSO AG
(b)	IF is $e^{\int 2dx} = e^{2x}$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[u \mathrm{e}^{2x} \right] = 1$	M1 A1		
	$\Rightarrow ue^{2x} = x + A$	A1		
	$\Rightarrow u = x e^{-2x} + A e^{-2x}$	A1	5	
	Alternative : Those using CF+PI			
	Auxiliary equation, $m + 2 = 0 \implies \mu = 4e^{-2x}$	B1		
	For u_{ex} try $u_{ex} = kre^{-2x} \Rightarrow$	M1		
	$ke^{-2x} - 2kxe^{-2x} + 2kxe^{-2x} \{= e^{-2x}\}$	A1		LHS
	$\Rightarrow k = 1 \Rightarrow \mu_{\text{ex}} = xe^{-2x}$	A1		
	$\Rightarrow u_{CS} = Ae^{-2x} + xe^{-2x}$	A1		
	03			
(c)	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x\mathrm{e}^{-2x} + A\mathrm{e}^{-2x}$	M1		Use (b) to reach a 1^{st} order DE in y and x
	IF is $e^{\int 2dx} = e^{2x}$	B1		
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left[y \mathrm{e}^{2x} \right] = x + A$	A1√		
	$\Rightarrow y e^{2x} = \frac{x^2}{2} + Ax + B$	A1√		
	$\Rightarrow y = e^{-2x} \left(\frac{x^2}{2} + Ax + B \right)$	A1	5	
	Total		14	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$(1+y)^{-1} = 1 - y + y^2 \dots$	B1	1	
(ii)	1			
	$\sec x \approx \frac{1}{1-\frac{x^2}{x^2}+\frac{x^4}{x^4}}$	B1		
	2 24			
	$= \left[1 - \frac{x^2}{2} + \frac{x^4}{24} \dots\right]^{-1} =$	M1		
	$\left\{1 - \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2\right\}$	M1		
	$= \left\{ 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + \dots \right\}$			
	$=1+\frac{x^2}{2};+\frac{5x^4}{24}$	A1;A1	5	AG be convinced
	Alternative: Those using Maclaurin			
	$f(x) = \sec x$ $f(0) = 1 \cdot f'(x) = \sec x \tan x \cdot \{f'(0) = 0\}$	(B1)		
	$f'(x) = \sec x \tan^2 x + \sec^3 x; f''(0) = 1$	$(\underline{\mathbf{D1}})$ (M1)		Product rule oe
	$f'''(x) = \sec x \tan^3 x + 5\tan x \sec^3 x;$	(m1)		Chain rule with product rule OE
	$f^{(iv)}(x) = \sec x \tan^4 x + 18\tan^2 x \sec^3 x \dots + 5\sec^5 x \implies f^{(iv)}(0) = 5$			
	sec $x \approx$ printed result	(A2)		CSO AG
(b)	$f(x) = \tan x;f(0) = 0; f'(x) = \sec^2 x; \{f'(0) = 1\}$	B1		
	$f''(x) = 2\sec(\sec(\tan x); f''(0) = 0)$	MI		Chain male with non-dust male as
	$f''(x) = 4\sec x \tan x(\sec x \tan x) + 2\sec x$ f'''(0) = 2	IVI I		Chain rule with product rule oe
	$\tan x = 0 + 1x + 0x^2 + \frac{2}{3!}x^3 \dots = x + \frac{1}{3}x^3$	A1	3	CSO AG
	Alternative: Those using otherwise	$(\mathbf{M}^{\mathbf{I}})$		
	$\dots = \frac{\sin x}{\cos x} \approx \left(x - \frac{x^3}{6} \dots \right) \left(1 + \frac{x^2}{2} \dots \right)$	(M1) (A1)		
	$= x + \frac{x^3}{2} - \frac{x^3}{6} \dots = x + \frac{1}{3}x^3 \dots$	(A1)		
(c)	$(x \tan 2x) x(2x + o(x^3))$	B1		$\tan 2x = 2x + \frac{1}{2}(2x)^3$
	$\left(\frac{x \tan 2x}{\sec x - 1}\right) = \frac{x^2}{x^2}$			$\frac{1}{3}$
	$\frac{1}{2} + o(x^2)$	IVI I		Condone $o(x^*)$ missing
	$2 + o(x^2)$			
	$-\frac{1}{2}+o(x^2)$	M1		
	$\lim_{x \to 0} \left(\frac{x \tan 2x}{\sec x - 1} \right) = 4$	A1√	4	ft on $2k$ after B0 for $\tan 2x = kx + \dots$
	Total		13	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a)	$y (1.05) = 0.6 + 0.05 \times [\ln(1 + 1 + 0.6)]$	M1A1		
	= 0.6477 (7557) = 0.6478 to 4dp	Al	3	Condone >4 dp
(b)	$k_1 = 0.05 \times \ln(1 + 1 + 0.6) = 0.0477(75)$	M1		PI
		A1F		ft candidate's evaluation in (a)
	$k_2 = 0.05 \times f (1.05, 0.6477)$			
	$\dots = 0.05 \times \ln(1 + 1.05^2 + 0.6477\dots)$	M1		
	= 0.0505(85)	A1F		Ы
		1111		
	$y(1.05) = y(1) + \frac{1}{2}[k_1 + k_2]$	m1		Dep on previous two Ms and numerical
	$= 0.6 + 0.5 \times 0.09836$			values for <i>k</i> 's
	= 0.6492 to 4dp	A1F	6	Must be 4 dn ft one slin
	Total		9	
2	$r - r\sin\theta = 4$	M1		
	r - y = 4	B1		$r\sin\theta = y$ stated or used
	r = y + 4	A1		
	$x^2 + y^2 = (y+4)^2$	M1		$r^2 = x^2 + y^2 \text{ used}$
	$x^2 + y^2 = y^2 + 8y + 16$	A1F		ft one slip
	$v = \frac{x^2 - 16}{x^2 - 16}$	A 1	6	
	- <u>8</u> T-4-1	AI	0	
	10tai		0	
3(a)	IF is $\exp\left(\int \frac{z}{r} dx\right)$	M1		And with integration attempted
	$=e^{2\ln x}$	A1		
	$= x^2$	A1	3	CSO AG be convinced
(b)	$\frac{d}{dr} \left[vr^2 \right] = 3r^2(r^3 + 1)^{\frac{1}{2}}$	N/1 A 1		DI
(~)	$dx^{\lfloor jn \rfloor} = \frac{1}{2} \frac{1}{2$	MIAI		
	$\Rightarrow yx^2 = \frac{2}{2}(x^3 + 1)^{\frac{3}{2}} + A$	m1		$k(x^3+1)^{\frac{3}{2}}$
	3 ` '	A1		Condone missing 'A'
	$\Rightarrow 4 - \frac{2}{(9)^2} + 4$	1		
	\rightarrow $-3^{(2)}$ $+2$	mı		constant
	$\Rightarrow A = -14$			
	$2\left(2\left(1-\frac{3}{2}\right)\right)$			
	$\Rightarrow y = x^{-2} \left\{ \frac{-}{3} (x^3 + 1)^2 - 14 \right\}$	A1	6	Any correct form
	Total		9	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
4(a)	Integrand is not defined at $x = 0$	E1	1	OE
(b)	$\int x^{-\frac{1}{2}} \ln x dx = 2x^{\frac{1}{2}} \ln x - \int 2x^{\frac{1}{2}} \left(\frac{1}{x}\right) dx$	M1		= $kx^{\frac{1}{2}} \ln x \pm \int f(x)$, with $f(x)$ not involving the 'original' $\ln x$
	$\dots = 2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}} (+c)$	Al Al	3	Condone absence of '+ c '
(c)	$\int_{0}^{e} \frac{\ln x}{\sqrt{x}} dx = \lim_{a \to 0} \int_{a}^{e} \frac{\ln x}{\sqrt{x}} dx$	M1		
	$= -2e^{\frac{1}{2}} - \frac{\lim}{a \to 0} \left[2a^{\frac{1}{2}} \ln a - 4a^{\frac{1}{2}} \right]$	M1		F(b) - F(a)
	But $\lim_{a \to 0} a^{\frac{1}{2}} \ln a = 0$	B1		Accept a general form e.g. $\lim_{x \to 0} x^k \ln x = 0$
	So $\int_{0}^{e} \frac{\ln x}{\sqrt{x}} dx$ exists and $= -2e^{\frac{1}{2}}$	A1	4	
	Total		8	
5	Auxl. eqn $m^2 - 4m + 3 = 0$	M1		PI
	m = 3 and 1 CF is $A e^{3x} + B e^{x}$ PI Try $y = a + b \sin x + c \cos x$ $y'(x) = b \cos x - c \sin x$	A1 A1F M1 A1		PI Condone ' <i>a</i> ' missing here
	$y''(x) = -b \sin x - c \cos x$ Substitute into DE gives a = 2 4c + 2b = 5 and 2c - 4b = 0	A1F M1 B1 A1		ft can be consistent sign error(s)
	b = 0.5, c = 1	A1F A1F		ft a slip ft a slip
	GS: $y = A e^{3x} + B e^{x} + 2 + 0.5 \sin x + \cos x$	B1F	12	y = candidate's CF and candidate's PI (must have exactly two arbitrary constants)
	Total		12	

<u>FP3 (cont)</u>				
Q	Solution	Marks	Total	Comments
6(a)(i)	$f'(x) = \frac{1}{2}(1+2x)^{-\frac{1}{2}}(2) = (1+2x)^{-\frac{1}{2}}$	M1A1		
	$f''(x) = -(1+2x)^{-\frac{3}{2}}$	A1F		ft a slip
	$f'''(x) = 3(1+2x)^{-\frac{5}{2}}$	A1	4	
(ii)	$\mathbf{f}(x) = (1+2x)^{\frac{1}{2}} \Longrightarrow \mathbf{f}(0) = 1;$	B1		
	f'(0) = 1; f''(0) = -1; f'''(0) = 3	M1		All three attempted
		A1F		ft on $k(1+2x)^m$
	$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \frac{x^3}{6}f'''(0)$			
	$\ldots \approx 1 + x - \frac{x^2}{2} + \frac{x^3}{2}$	A1	4	CSO AG
(b)	$e^{x}(1+2x)^{\frac{1}{2}}\approx$			
	$\left(1+x+\frac{x^2}{2}+\frac{x^3}{6}\right)\left(1+x-\frac{x^2}{2}+\frac{x^3}{2}\right)$	M1		Attempt to expand needed
	$\approx 1 + x (1+1) + x^2 (-0.5 + 1 + 0.5)$	A1		
	$+ x^{3}\left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{6}\right)$			
	$\approx 1 + 2x + x^2 + \frac{2}{3}x^3$	A1	3	CSO
(c)	$e^{2x} = 1 + 2x + \frac{(2x)^2}{2} + \frac{(2x)^3}{6} + \dots$	B1	1	
	$= 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots$			
(d)	$1 - \cos x = \frac{1}{2}x^2 + \{o(x^4)\}$	B1		
	$e^{x}(1+2x)^{\frac{1}{2}}-e^{2x}$			
	$\frac{c(1+2x)-c}{1-\cos x} =$			
	$1+2x+x^2+\frac{2}{2}x^3-\left[1+2x+2x^2+\frac{4}{2}x^3\right]$	M1		Series used
	$\frac{3}{\frac{1}{2}x^2 + \left\{o(x^4)\right\}}$			
	$\lim_{x \to 1} \lim_{x \to 1} -x^2 + \{o(x^3)\}$			
	$x \to 0 = x \to 0 = \frac{1}{2} x^2 + \{o(x^4)\}$	AIF		
	$\lim_{x \to 1} \frac{-1 + o(x)}{1} = -2$	A1F	4	ft a slip but must see the intermediate
	$x \to 0 \frac{1}{2} + o(x^2)$	1111	т	stage
	Total		16	

MFP3 (cont)	r	r	
Q	Solution	Marks	Total	Comments
7(a)	Area = $\frac{1}{2}\int (6+4\cos\theta)^2 d\theta$	M1		use of $\frac{1}{2}\int r^2 d\theta$
	$= \frac{1}{2} \left(\int_{-\pi}^{\pi} 36 + 48 \cos \theta + 16 \cos^2 \theta \right) d\theta$	B1 B1		for correct expansion of $[6 + 4\cos\theta)]^2$ for limits
	$= \left(\int_{-\pi}^{\pi} 18 + 24\cos\theta + 4(\cos 2\theta + 1)\right) d\theta$	M1		Attempt to write $\cos^2 \theta$ in terms of $\cos 2\theta$
	$= \left[22\theta + 24\sin\theta + 2\sin 2\theta\right]_{-\pi}^{\pi}$	A1F		correct integration ft wrong coefficients
	$=44\pi$	A1	6	CSO
(b)	At P, $r = 4$; At Q, $r = 2$;	B1		PI
	$P \{x=\} r \cos \theta = 4 \cos \frac{2\pi}{2} = -2$	M1		Attempt to use $r \cos \theta$
	$Q \{x=\} r \cos \theta = 2 \cos \pi = -2$	A1		Both
	Since P and Q have same 'x', PQ is vertical so QP is parallel to the vertical			
	line $\theta = \frac{\pi}{2}$	E1	4	
(c)(i)	OP = 4; OS = 8;	B1		
	Angle $POS = \frac{\pi}{3}$	B1		or <i>S</i> (4, 4 $\sqrt{3}$) and <i>P</i> (-2, 2 $\sqrt{3}$)
	$PS^2 = 4^2 + 8^2 - 2 \times 4 \times 8 \times \cos \frac{\pi}{3}$ oe	M1		Cosine rule used in triangle POS OE $PS^2 = (4+2)^2 + (4\sqrt{3} - 2\sqrt{3})^2$
	$PS = \sqrt{48} \left\{=4\sqrt{3}\right\}$	A1	4	
(ii)	Since $8^2 = 4^2 + (\sqrt{48})^2$,	E1	1	Accept valid equivalents e.g. $PR = 2PQ = 2(2\sqrt{3}) = PS$
	$OS^2 = OP^2 + PS^2 \Rightarrow OPS$ is a right angle. (Converse of Pythagoras Theorem)			$\angle SRP = \angle RSP = \angle RPO = \frac{\pi}{2}$
				$\Rightarrow OPS$ is a right angle
	Total		15	
	TOTAL		75	
L	IUIAL	I	10	1

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1(a)	$y_{\rm PI} = kx^2 e^{5x} \Longrightarrow y' = 2kx e^{5x} + 5kx^2 e^{5x}$	M1 A1		Product rule to differentiate $x^2 e^{5x}$
	$\Rightarrow y'' = 2ke^{5x} + 10kxe^{5x} + 10kxe^{5x} + 25kx^2e^{5x}$	Alft		
	$\Rightarrow 2ke^{5x} + 20kxe^{5x} + 25kx^2e^{5x}$			
	$-10(2kxe^{5x} + 5kx^2e^{5x}) + 25kx^2e^{5x} = 6e^{5x}$	M1 A1		Substitution into differential equation
	$2k = 6 \implies k = 3$	A1ft	6	Only ft if xe^{5x} and x^2e^{5x} terms all cancel out
(b)	Aux. eqn. $m^2 - 10m + 25 = 0 \Longrightarrow m = 5$	B1		PI
	CF is $(A+Bx)e^{5x}$	M1		
	GS $y = (A + Bx)e^{5x} + 3x^2e^{5x}$	M1		Their CF + their/our PI
	Total	Alft	4	ft only on wrong value of k
2(-)	1000000000000000000000000000000000000	M1	10	
2(a)	$y_1 = 2 + 0.1 \times \sqrt{1 + 2 + 5}$	MI		
	$y(1.1) = 2 + 0.1 \times \sqrt{8}$	A1		
	y(1.1) = 2.28284 = 2.2828 to 4dp	A1	3	
(b)	$k_1 = 0.1 \times \sqrt{8} = 0.2828$	M1 A1ft		РІ
	$k_2 = 0.1 \times f(1.1, 2.2828)$	M1		
	$= 0.1 \times \sqrt{9.42137} = 0.3069(425)$	A1		PI
	$y(1.1) = y(1) + \frac{1}{2}[0.28284+0.30694]$	m1		
	2.29489 = 2.2949 to 4dp	A1	6	
	Total		9	
3	IF is $e^{\int \tan x dx}$	M1		
	$= e^{-\ln \cos x} = e^{\ln \sec x}$	A1		Accept either
	$= \sec x$	Alft		ft on earlier sign error
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\sec x) = \sec^2 x$	M1A1		
	$y \sec x = \int \sec^2 x \mathrm{d}x$			
	$y \sec x = \tan x + c$	A1		Condone missing <i>c</i>
	$y = 3$ when $x = 0 \Rightarrow 3$ sec $0 = 0 + c$	m1		_
	$c = 3 \Longrightarrow y \sec x = \tan x + 3$	A1	8	OE; condone solution finishing at $c = 3$ provided no errors
	Total		8	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
4(a)	$(\cos\theta + \sin\theta)^2 = \cos^2\theta + \sin^2\theta + 2\cos\theta\sin\theta$ $= 1 + \sin 2\theta$	B1	1	AG (be convinced)
(b)	$(x^{2} + y^{2})^{3} = (x + y)^{4}$			\mathbf{M} for one of $x^2 + x^2 = x^2$ OF
	$ (r^{2}) = (r\cos\theta + r\sin\theta)^{4} $ $ r^{6} = r^{4} (\cos\theta + \sin\theta)^{4} $	M2,1,0		$[vir i \text{ for one of } x + y - r \text{ OE}, \\ x = r\cos\theta, y = r\sin\theta \text{ used}]$
	$r^{6} = r^{4} \left(1 + \sin 2\theta\right)^{2}$	M1		Uses (a) OE at any stage
	$r^2 = (1 + \sin 2\theta)^2$			
(c)(i)	$\Rightarrow r = (1 + \sin 2\theta) \{r \ge 0\}$ $r = 0 \Rightarrow \sin 2\theta = -1$	A1	4	CSO; AG
	$2\theta = \sin^{-1}(-1); = -\frac{\pi}{2}, \frac{3\pi}{2}$	M1		
	$\theta = -\frac{\pi}{4}; \frac{3\pi}{4}$	A1A1ft	3	A1 for either
(ii)	Area = $\frac{1}{2}\int (1+\sin 2\theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$=\frac{1}{2}\int (1+2\sin 2\theta + \sin^2 2\theta) \mathrm{d}\theta$	B1		Correct expansion of $(1+\sin 2\theta)^2$
	$=\frac{1}{2}\int \left(1+2\sin 2\theta+\frac{1}{2}\left(1-\cos 4\theta\right)\right)d\theta$	M1		Attempt to write $\sin^2 2\theta$ in terms of $\cos 4\theta$
	$= \left[\frac{3}{4}\theta - \frac{1}{2}\cos 2\theta - \frac{1}{16}\sin 4\theta\right]$	Alft		Correct integration ft wrong coefficients only
	$= \left[\frac{3}{4}\theta - \frac{1}{2}\cos 2\theta - \frac{1}{16}\sin 4\theta\right]_{-\frac{\pi}{4}}^{\frac{5\pi}{4}}$			
	$= \left(\frac{9\pi}{16}\right) - \left(-\frac{3\pi}{16}\right)$	m1		Using c's values from (c)(i) as limits or the correct limits
	$=\frac{5\pi}{4}$	A1	6	CSO
	Total		14	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$u = \frac{\mathrm{d}y}{\mathrm{d}x} + x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 1$	M1A1		
	$(x^{2}-1)\left(\frac{du}{dx}-1\right)-2x(u-x)=x^{2}+1$	M1		Substitution into LHS of DE as far as no <i>y</i> s
	$DE \Rightarrow (x^2 - 1)\frac{du}{dx} - 2xu = 0$			
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1}$	A1	4	CSO; AG
(b)	$\int \frac{1}{u} \mathrm{d}u = \int \frac{2x}{x^2 - 1} \mathrm{d}x$	M1 A1		Separate variables
	$\ln u = \ln \left x^2 - 1 \right + \ln A$	A1A1		
	$u = A \ (x^2 - 1)$	A1	5	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} + x = A \left(x^2 - 1 \right)$	M1		Use (b) ($\neq 0$) to form DE in y and x
	$\frac{\mathrm{d}y}{\mathrm{d}x} = A \left(x^2 - 1\right) - x$			
	$y = A\left(\frac{x^3}{3} - x\right) - \frac{x^2}{2} + B$	M1		Solution must have two different constants and correct method used to solve the DE
		Alft	3	
	Total		12	

MFP3 (cont				
Q	Solution	Marks	Total	Comments
6(a)(i)	$f(x) = \ln(1 + e^x):$			
	$f(0) = \ln 2$	B1		
	$f'(x) = \frac{e^x}{1 + e^x}$ $f'(0) = \frac{1}{2}$	M1 A1		Chain rule
	$f''(x) = \frac{(1+e^x)e^x - e^x e^x}{(1+e^x)^2} = \frac{e^x}{(1+e^x)^2}$	M1 A1		Quotient rule OE
	$f''(0) = \frac{1}{4}$			
	so first three terms are: $f(x) = \ln 2 + \frac{1}{2}x + \frac{1}{4}\frac{x^2}{2!} = \ln 2 + \frac{1}{2}x + \frac{1}{8}x^2$	A1	6	CSO; AG
(ii)	$f'''(x) = \frac{(1+e^x)^2 e^x - e^x \left[2(1+e^x) e^x \right]}{(1+e^x)^4}$	M1 A1ft		Chain rule with quotient/product rule ft on $f''(x) = ke^{x} (1+e^{x})^{n}$ (integer $n < 0$)
	$f'''(0) = \frac{4-4}{2^4} = 0$ (so coefficient of x^3 is zero)	A1	3	CSO; AG; All previous differentiation correct
		SC for th	lose not us	sing Maclaurin's theorem: maximum of 4/9
(b)	$\frac{1}{2}x + \frac{1}{8}x^2$	B1	1	
(c)	$\ln\left(1-\frac{x}{2}\right) =$			
	$\left(-\frac{x}{2}\right) - \frac{1}{2}\left(-\frac{x}{2}\right)^2 + \frac{1}{3}\left(-\frac{x}{2}\right)^3 - \dots$	B1	1	
(d)	$\ln\left(\frac{1+e^{x}}{2}\right) + \ln\left(1-\frac{x}{2}\right) = -\frac{x^{3}}{24} + \dots$	M1		Uses previous expansions to obtain first non-zero term of the form kx^3
	$x - \sin x \approx x - \left[x - \frac{x^3}{3!} +\right] \approx \frac{x^3}{3!} +$	B1		
	$\left[\frac{\ln\left(\frac{1+e^{x}}{2}\right)+\ln\left(1-\frac{x}{2}\right)}{x-\sin x}\right] = \frac{-\frac{1}{24}x^{3}+}{\frac{1}{6}x^{3}+o(x^{5})}$	M1		
	$=\frac{-\frac{1}{24}x^{3}+}{x^{3}\left[\frac{1}{6}+o(x^{2})\right]}=\frac{-\frac{1}{24}+}{\frac{1}{6}+o(x^{2})}$			
	$\lim_{x\to 0} \ldots = -\frac{1}{4}$	A1	4	CSO
	Total		15	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	0 $u = re^{-x} + 1 \Longrightarrow du = (e^{-x} - re^{-x}) dr$	B1 M1	1	Attempts to find du
	$\int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx = \int \frac{1}{u} du = \ln u + c$	1/11		
	$= \ln(xe^{-x} + 1)\{+c\}$	A1	2	Condone missing <i>c</i>
(c)	$\int \frac{1-x}{x+e^x} dx = \int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx$	B1		
	$\int_{1}^{\infty} \frac{1-x}{x+e^{x}} dx = \lim_{a \to \infty} \left[\ln(xe^{-x}+1) \right]_{1}^{a}$			
	$= \lim_{a \to \infty} \left\{ \ln \left(a e^{-a} + 1 \right) \right\} - \ln \left(e^{-1} + 1 \right)$	M1		For using part (b) and $F(B) - F(A)$
	$= \ln \{ \lim_{a \to \infty} (ae^{-a} + 1) \} - \ln (e^{-1} + 1) $ = $\ln 1 - \ln (e^{-1} + 1) = -\ln (e^{-1} + 1)$	M1		For using limiting process
		Al	4	
			/	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1 (a)	$y(2.1) = y(2) + 0.1[2^2 - 1^2]$	M1A1		
	$= 1+0.1 \times 3 = 1.3$	A1	3	
(b)	y(2.2) = y(2) + 2(0.1)[f(2.1, y(2.1))]	M1		
	$\dots = 1 + 2(0.1)[2.1^2 - 1.3^2]$	A1√`		Ft on cand's answer to (a)
	$-1+0.2\times2.72-1.544$	A 1	3	CAO
	= 1+0.2^2.72 = 1.544 Total		6	
2(a)	10141		U	
2(u)	Area = $\frac{1}{2}\int (1 + \tan \theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$\dots = \frac{1}{2} \int (1 + 2 \tan \theta + \tan^2 \theta) d\theta$	B1		Correct expansion of $(1+\tan\theta)^2$
	2.			
	1 0			
	$=\frac{1}{2} \left(\sec^2 \theta + 2 \tan \theta \right) d\theta$	M1		$1 + \tan^2 \theta = \sec^2 \theta$ used
	20			
	1			2
	$= -\frac{1}{2} [\tan \theta + 2 \ln(\sec \theta)]^3$	Al		Integrating $p \sec^2 \theta$ correctly
	- 0	BI√		Integrating $q \tan \theta$ correctly
	$=\frac{1}{\sqrt{3}}\left[(\sqrt{3}+2\ln 2)-0\right]=\frac{\sqrt{3}}{\sqrt{3}}+\ln 2$	A 1	6	Completion AC CSO be convinced
		AI	0	Completion. AO CSO be convinced
(b)	π			
	$OP = 1; OQ = 1 + \tan \frac{1}{3}$	B1		Both needed. Accept 2.73 for OQ
	Shaded area =			
	(1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 5, 7, 1, 2, 2, 3, 3, 5, 7, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,			
	$\operatorname{answer}(a)^{*} - \frac{-OP \times OQ \times \sin\left(\frac{-}{3}\right)}{2}$	M1		
	·[3 ·[3 -			
	$=\frac{\sqrt{3}}{2}+\ln 2-\frac{\sqrt{3}}{4}(1+\sqrt{3})$	A1	3	ACF. Condone 0.376 if exact 'value'
	$\sqrt{\frac{2}{5}}$			for area of triangle seen
	$=\frac{\sqrt{3}}{1}+\ln 2-\frac{3}{1}$			
	4 4			
	Total		9	
	IUtal		,	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
3 (a)	$(m+2)^2 = -1$	M1		Completing sq or formula
	m = -2 + i	A 1		
		711		
	CF is $e^{-2x}(A \cos x + B \sin x)$	M1		If <i>m</i> is real give M0
	$\{ \text{or } e^{-x}A \cos(x+B) \}$	A1√		Ft on wrong <i>a</i> 's and <i>b</i> 's but roots must be
	but not $Ae^{(-1+i)x} + Be^{(-1-i)x}$ }			complex
		D.		
	PI try $y = p \implies 5p = 5$ PI is $y = 1$	BI		
	$\mathbf{CS} = \mathbf{v} = e^{-2x} (A \cos x + B \sin x) + 1$	D 1 ∧	6	Their CE + their DI with two orbitrary
	GS y = e (ACOSx + BSIIIx) + 1	DIV	0	constants
				constants.
(b)	$x=0, y=2 \Rightarrow A=1$	B1√		Provided previous B1 \checkmark awarded
	$y'(x) = -2e^{-2x}(A\cos x + B\sin x) +$	M1		Product rule used
	$+ e^{-2x}(-A\sin x + B\cos x)$	A1√		
	$y'(0) = 3 \Longrightarrow 3 = -2A + B \Longrightarrow B = 5$	A1√	4	Ft on one slip
	$y = e^{-2x}(\cos x + 5\sin x) + 1$		10	
4(a)	10tal	E1	10	OF
4(a)	The interval of integration is infinite	EI	1	Ŭ E
(b)				
	$\int x e^{-3x} dx = -\frac{1}{x} e^{-3x} - \int -\frac{1}{x} e^{-3x} dx$	M1		Reasonable attempt at parts
	J 3 J 3	A1		
	1 3× 1 3×			
	$=-\frac{1}{3}xe^{-3x}-\frac{1}{9}e^{-3x}\{+c\}$	A1√	3	Condone absence of $+c$
(C)	$I = \int_{-\infty}^{\infty} w e^{-3x} dx = \lim_{x \to -\infty} \int_{-\infty}^{x} w e^{-3x} dx$			
	$I = \int xe^{-\alpha} dx = a \to \infty \int xe^{-\alpha} dx$			
	$\lim_{a \to \infty} \left\{ -\frac{1}{2} a e^{-3a} - \frac{1}{2} e^{-3a} \right\} = \left -\frac{4}{2} e^{-3} \right $	M1		F(a) - F(1) with an indication of limit
	$u \rightarrow \infty$ 3 9 [9]			$a \rightarrow \infty$
	2	2.55		
	$\lim a e^{-5a} = 0$	M1		For statement with limit/limiting process
	$a \rightarrow \infty$			SHOWI
	$I = \frac{4}{10} e^{-3}$			
	<u>9</u>	A1	3	
	Total		7	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
5	IF is $e^{\int \frac{4x}{x^2+1}} dx$	M1		
	$\frac{11}{2} \frac{15}{2} \frac{c^2}{r^2+1}$			
	$= e^{-i(x^2 + x^2)}$	AI		
	$= e^{\ln(x^2+1)^2} = (x^2+1)^2$	A1√		Ft on $e^{p \ln(x^2+1)}$
	$d(y(x^2+1)^2) - x(x^2+1)^2$	M1		LHS as $d/dx(y \times cand's IF)$ PI and also
	$\frac{1}{\mathrm{d}x}\left(y(x+1)\right) = x(x+1)$	A 1 A		RHS of form $kx(x^2+1)^p$
		AI√		
	$y(x^2+1)^2 = \int x(x^2+1)^2 dx$			
	$y(x^{2}+1)^{2} = \frac{1}{(x^{2}+1)^{3}} + c$	M1		Use of suitable substitution to find RHS
	6()	A1		or reaching $k(x^2+1)^3$ OE
	-			Condone missing <i>c</i>
	$y(0) = 1 \implies c = \frac{5}{6}$	m1		
	$y = \frac{1}{2}(x^2 + 1) + \frac{5}{2}$	Δ 1	Q	Accept other forms of $f(r)$
	$6'$ $6(x^2+1)^2$	711	,	$\begin{pmatrix} r^6 & 2r^4 & r^2 \end{pmatrix}$
				$\left[\frac{x}{6} + \frac{2x}{4} + \frac{x}{2} + 1\right]$
				eg $y = \frac{(x^2 + 1)^2}{(x^2 + 1)^2}$
	Total		0	
6(a)	$r^2 2 \sin \theta \cos \theta = 8$	M1		$\sin 2\theta = 2\sin\theta\cos\theta$ used
	$x = r \cos \theta \qquad y = r \sin \theta$	M1		Either <u>one</u> stated or used
	$y = 4$ $y = \frac{4}{3}$			Either OE eq. $y = \frac{8}{3}$
	xy = -, $y = -$	A1	3	Ender off eg $y = \frac{1}{2x}$
(b)	У †			
		B1	1	
(c)	$r = 2 \sec \theta$ is $x = 2$	B1		
	Sub $x = 2$ in $xy = 4 \implies 2y = 4$	M1		
	In cartesian, $A(2, 2)$			
	$\Rightarrow \tan \theta = \frac{y}{2} = 1 \Rightarrow \theta = \frac{\pi}{4}$			$v = \sqrt{2}$
	$\frac{x}{\sqrt{2}-2}$ $\sqrt{2}$	M1		Used either $\tan \theta = \frac{y}{x}$ or $r = \sqrt{x^2 + y^2}$
	$\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8}$			
	$ heta=rac{\pi}{4}\;;r=\sqrt{8}$	A1	4	r must be given in surd form
	Altn2: Eliminating r to reach eqn. in $\cos\theta$			Altn3: $r\sin\theta = 2$ (B1)
	and $\sin\theta$ only (M1) $\theta = \frac{\pi}{2}$ (A1)			Solving $r\cos\theta = 2$ and $r\sin\theta = 2$
				simultaneously (M1) $\tan \theta = 1$ or $r^2 - 2^2 \pm 2^2$ (M1)
	Substitution $r=2\sec\left(\frac{\pi}{4}\right)$ (m1)			$\pi = \pi =$
				$\theta = \frac{1}{4}$; $r = \sqrt{8}$ (A1) need both
	$r = \sqrt{8}$ (A1) UE surd		Q	
	lotal		ð	
MFP3 (cont)			
------------	---	----------	-------	--
Q	Solution	Marks	Total	Comments
7(a)(i)	$\ln(1+2x) = 2x - 2x^2 + \frac{8}{3}x^3 \dots$	M1 A1	2	Use of expansion of $ln(1+x)$ Simplified 'numerators'.
(ii)	$-\frac{1}{2} < x \le \frac{1}{2}$	B1	1	
(b)(i)	$y=\ln \cos x \Rightarrow y'(x) = \frac{1}{\cos x}(-\sin x)$	M1		
	$y''(x) = -\sec^2 x$ $y'''(x) = -2\sec x (\sec x \tan x)$	A1 M1		ACF Chain rule OE
	$\{y'''(x) = -2\tan x(\sec^2 x)\}$	A1√	4	Ft a slipaccept unsimplified
(ii)	$y''''(x) = -2[\sec^2 x(\sec^2 x) + \tan x(2\sec x (\sec x \tan x))]$	M1 A1		Product rule OE ACF
	$y''''(0) = -2[(1)^2 + 0] = -2$	A1√	3	Ft a slip
(iii)	lncos x≈0+0+ $\frac{x^2}{2}(-1)$ +0+ $\frac{x^4}{4!}(-2)$	M1		
	$\approx -\frac{x^2}{2} - \frac{x^4}{12}$	A1	2	CSO throughout part (b). AG
(c)	$\text{Limit} = \lim_{x \to 0} \left[\frac{x \ln(1+2x)}{x^2 - \ln \cos x} \right]$ $\left[x(2x - 2x^2 +) \right]$			
	$= \lim_{x \to 0} \left[\frac{1}{x^2 - \left(-\frac{x^2}{2} - \frac{x^4}{12} \right)} \right]$	M1		Using earlier expansions
	Limit = $\lim_{x \to 0} \frac{2x^2 - o(x^3)}{1.5x^2 + o(x^4)}$			The notation $o(x^n)$ can be replaced by a term of the form kx^n
	$= \lim_{x \to 0} \frac{2 - o(x)}{1.5 + o(x^2)} = \frac{4}{3}$	M1 A1	3	Need to see stage, division by x^2
	Total		15	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
8(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^t \ \{=x\}$	B1		
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}x}$	M1		Chain rule
	$= x \frac{\mathrm{d}y}{\mathrm{d}t} \frac{1}{x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	A1	3	Completion. AG
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(x \frac{\mathrm{d}y}{\mathrm{d}x} \right) =$			
	$=\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	M1		Product rule
	$\dots = \frac{\mathrm{d}y}{\mathrm{d}t} + x\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	M1		
	$\dots = \frac{\mathrm{d}y}{\mathrm{d}t} + x^2 \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)$	A1	3	Condone leaving in this form
	$\Rightarrow x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}$			AG
(b)	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6x \frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0$			
	$\Rightarrow \frac{d^2 y}{dt^2} - 7\frac{dy}{dt} + 6y = 0$	M1		Using results in (a) to reach DE of this form
	Auxl eqn $m^2 - 7m + 6 = 0$			זמ
	(m-6)(m-1) = 0 m = 1 and 6	A1		PI PI
	$y = Ae^{6t} + Be^{t}$	M1		Must be solving the 'correct' DE.
				(Give M1A0 for $y = Ae^{6x} + Be^{x}$)
	$y = Ax^6 + Bx$	A1√	5	Ft a minor slip only if previous A0 and all three method marks gained
	Total		11	Sunda
	TOTAL		75	
L	19111	1		1

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation						
\sqrt{or} ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MED2	
MITTJ	

	Solution	Morke	Total	Comments
<u>V</u>		Ivial KS	10141	Comments
1	$k_1 = 0.1 \times \ln(2+3)$	M1		
	= 0.1609(4379) (= *)	A1		PI
	$k_2 = 0.1 \times f(2.1, 3 + *)$	N/1		
	$\dots = 0.1 \times \ln(2.1 + 3.16094)$	MI		
	$\dots = 0.1660(31)$	AI		PI
	1			
	$y(2.1) = y(2) + \frac{1}{2} [k_1 + k_2]$	m1		Dep on previous two Ms and numerical
	$2 - 2 + 0.5 \times 0.2260748$			values for k's
	$= 3 + 0.3 \times 0.3209748$			
	= 3.163487 = 3.1635 to 4dp	A1	6	Must be 3.1635
	Total		6	
2(a)	PI: $y_{pt} = a + bx + c \sin x + d \cos x$			
	$y' = b + c \cos x - d \sin x$			
	$b + a \cos x + d \sin x + 3a - 3bx + 3a \sin x$	M1		Substituting into DE
	$b + c \cos x - u \sin x - 5u - 5bx - 5c \sin x$	1911		Substituting into DE
	$-3d\cos x = 10\sin x - 3x$			
	b-3a=0; -3b=-3; c-3d=0; -d-3c=10	M1		Equating coefficients (at least 2 eqns)
	1 1 2 1 1	40.1	4	
	$a = -\frac{1}{3}; b = 1; c = -3; d = -1$	A2,1	4	A1 for any two correct
	1			
	$y_{PI} = \frac{-}{3} + x - 3 \sin x - \cos x$			
(b)	Aux. eqn. $m - 3 = 0$	M1		Altn. $\int y^{-1} dy = \int 3 dx$ OE (M1)
	(3^{x})			$4e^{3x}$ OF
	$(y_{CF} =)Ae^{-x}$	AI		AC OL
	$(y_{cs} =)Ae^{3x} + \frac{1}{x} + x - 3\sin x - \cos x$	B1F	3	(c's $CF + c$'s PI) with 1 arbitrary constant
	3			· · ·
2(0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1	<u>7</u> 1	
5(a)	$x + y = 1 - 2y + y \implies x + y = (1 - y)$	DI	1	AG
(b)	$r^{2} + v^{2} - r^{2}$	M1		$Or r = r \cos \theta$
	x + y = r			Of $x = 7\cos\theta$
	$y = 7 \sin \theta$	IVI I		
	x = 1 - 2y so $x + y = (1 - y)$	Δ 1		$OE = a_2 + a_2^2 + a_3 + a_4^2 = 1 - 2a_4 \sin \theta$
	$\Rightarrow r^{-} = (1 - r \sin \theta)^{-}$	AI		OE eg $r \cos \theta = 1 - 2r \sin \theta$ PI by the next line
	$r = 1 - r \sin \theta$ or $r = -(1 - r \sin \theta)$	m1		Either
	$r(1+\sin\theta) = 1$ or $r(1-\sin\theta) = -1$			
	1			
	$r > 0$ so $r = \frac{1}{1 + \sin \theta}$	A1	5	CSO
	Total		6	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4 (a)	$u = \frac{\mathrm{d}y}{\mathrm{d}x} \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	M1		
	$x\frac{\mathrm{d}u}{\mathrm{d}x} - u = 3x^2 \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} - \frac{1}{x}u = 3x$	A1	2	AG Substitution into LHS of DE and completion
(b)	IF is exp $\left(\int -\frac{1}{x} dx\right)$	M1		and with integration attempted
	$=e^{-\ln x}$	A1		
	$=x^{-1}$ or $\frac{1}{x}$	A1		or multiple of x^{-1}
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[ux^{-1} \right] = 3$	M1		LHS as differential of $u \times IF$. PI
	$\Rightarrow ux^{-1} = 3x + A$	m1		Must have an arbitrary constant (Dep. on previous M1 only)
	$u = 3x^2 + Ax$	A1	6	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + Ax$	M1		Replaces <i>u</i> by $\frac{dy}{dx}$ and attempts to
				Integrate
	$y = x^3 + \frac{Ax^2}{2} + B$	A1F	2	ft on cand's <i>u</i> but solution must have two arbitrary constants
	Total		10	
5(a)	$\int x^{3} \ln x dx = \frac{x^{4}}{4} \ln x - \int \frac{x^{4}}{4} \left(\frac{1}{x}\right) dx$	M1		= $kx^4 \ln x \pm \int f(x)$, with $f(x)$ not involving the 'original' $\ln x$
		A1		
	$\dots = \frac{x^4}{4} \ln x - \frac{x^4}{16} + c$	A1	3	Condone absence of '+ c '
(b)	Integrand is not defined at $x = 0$	E1	1	OE
(c)	$\int_{0}^{e} x^{3} \ln x dx = \left\{ \lim_{a \to 0} \int_{a}^{e} x^{3} \ln x dx \right\}$			
	$=\frac{3e^{4}}{16}-\lim_{a\to 0}\left[\frac{a^{4}}{4}\ln a-\frac{a^{4}}{16}\right]$	M1		F(e) - F(a)
	But $\lim_{a\to 0} a^4 \ln a = 0$	B1		Accept a general form eg $\lim_{x\to 0} x^k \ln x = 0$
	So $\int_{0}^{e} x^{3} \ln x dx$ exists and $=\frac{3e^{4}}{16}$	A1	3	CSO
	Total		7	

MFP3	(cont)
111111	(COIIC)

Q	Solution	Marks	Total	Comments
6 (a)	Aux eqn: $m^2 - 2m - 3 = 0$	M1		
	m = -1, 3	A1		PI
	CF $(y_c =)Ae^{3x} + Be^{-x}$	M1		
	Try $(y_{PI} =) a e^{-2x} (+b)$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2a\mathrm{e}^{-2x}$	A1		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4a\mathrm{e}^{-2x}$	A1		
	Substitute into DE gives $4\pi e^{-2x} + 4\pi e^{-2x} + 2\pi e^{-2x} + 2h = 10e^{-2x} = 0$	M1		
	4ae + 4ae - 5ae - 5b = 10e - 9	101 1		
	$\Rightarrow a = 2$ b = 3	A1 B1		
	$(y_{GS} =)Ae^{3x} + Be^{-x} + 2e^{-2x} + 3$	B1F	10	(c's CF+c's PI) with 2 arbitrary constants
(b)	$x = 0, y = 7 \implies 7 = A + B + 2 + 3$	B1F		Only ft if exponentials in GS and two arbitrary constants remain
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3A\mathrm{e}^{3x} - B\mathrm{e}^{-x} - 4\mathrm{e}^{-2x}$			
	As $x \to \infty$, $e^{-kx} \to 0$, $\frac{dy}{dx} \to 0$ so $A = 0$	B1		
	When $A = 0$, $5 = 0 + B + 3 \implies B = 2$	B1F		Must be using ' $A' = 0$
	$y = 2e^{-x} + 2e^{-2x} + 3$	Al	4	CSO
	Total		14	
	1 otal			

Q	Solution	Marks	Total	Comments
7(a)	$\sin 2x \approx 2x - \frac{(2x)^3}{3!} + = 2x - \frac{4}{3}x^3 +$	B1	1	
(b)(i)	$\frac{dy}{dx} = \frac{1}{2} (3 + e^x)^{-\frac{1}{2}} (e^x)$	M1 A1		Chain rule
	$\frac{d^2 y}{dx^2} = \frac{1}{2} e^x (3 + e^x)^{-\frac{1}{2}} - \frac{1}{4} (3 + e^x)^{-\frac{3}{2}} (e^{2x})$	M1 A1		Product rule OE OE
	$y'(0) = \frac{1}{4}; y''(0) = \frac{1}{4} - \frac{1}{32} = \frac{7}{32}$	A1	5	CSO
(ii)	$y(0) = 2; y'(0) = \frac{1}{4}; y''(0) = \frac{1}{4} - \frac{1}{32} = \frac{7}{32}$			
	McC. Thm: $y(0) + x y'(0) + \frac{x^2}{2} y''(0)$			
	$\sqrt{3 + e^x} \approx 2 + \frac{1}{4}x + \frac{7}{64}x^2$	M1 A1	2	CSO; AG
(c)	$\left[\frac{\sqrt{3+e^{x}}-2}{\sin 2x}\right] = \left[\frac{2+\frac{1}{4}x+\frac{7}{64}x^{2}-2}{2x-\frac{4}{3}x^{3}}\right]$	M1		
	$= \left[\frac{\frac{1}{4} + \frac{7}{64}x + \dots}{2 - \frac{4}{3}x^2 + \dots}\right]$	m1		Dividing numerator and denominator by x to get constant term in each
	$\lim_{x \to 0} \left[\frac{\sqrt{3 + e^x} - 2}{\sin 2x} \right] = \frac{\frac{1}{4}}{2} = \frac{1}{8}$	A1F	3	Ft on cand's answer to (a) provided of the form $ax+bx^3$
	Total		11	

MFP3	(cont)
111111	(cont)

Q	Solution	Marks	Total	Comments
8 (a)	$\theta = 0, r = 5 + 2\cos 0 = 7 \{A \text{ lies on } C\}$	B1		
	$\theta = \pi, r = 5 + 2\cos \pi = 3 \{B \text{ lies on } C\}$	B1	2	
(b)	<u>3</u> <u>5</u> 5	B1 B1	2	Closed single loop curve, with (indication of) symmetry Critical values, 3,5,7 indicated
(c)	Area = $\frac{1}{2}\int (5+2\cos\theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$=\frac{1}{2}\int_{-\pi}^{\pi} \left(25+20\cos\theta+4\cos^2\theta\right) \mathrm{d}\theta$	B1 B1		OE for correct expansion of $(5 + 2\cos\theta)^2$ For correct limits
	$=\frac{1}{2}\int_{-\pi}^{\pi} \left(25+20\cos\theta+2(\cos 2\theta+1)\right) \mathrm{d}\theta$	M1		Attempt to write $\cos^2 \theta$ in terms of $\cos 2\theta$
	$= \frac{1}{2} \left[27\theta + 20\sin\theta + \sin 2\theta \right]_{-\pi}^{\pi}$	A1F		Correct integration ft wrong non-zero coefficients in $a + b\cos\theta + c\cos 2\theta$
	$=27\pi$	A1	6	CSO
(d)	Triangle <i>OBQ</i> with $OB = 3$ and angle $BOQ = \alpha$	B1		PI
	$OQ = 5 + 2\cos(-\pi + \alpha)$	M1		OE
	Area of triangle $OQB = \frac{1}{2}OB \times OQ\sin\alpha$	m1		Dep. on correct method to find OQ
	$=\frac{3}{2}(5-2\cos\alpha)\sin\alpha$	A1	4	CSO
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for	r accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1 (a)	$y_1 = 3 + 0.2 \times \left[\frac{1^2 + 3^2}{1 + 3}\right]$	M1A1		
	= 3 .5	A1	3	
(b)	$k = 0.2 \times 2.5 = 0.5$	B1ft		PI ft from (a)
	$k_1 = 0.2 \times f(1, 2, 3, 5)$	M1		ft on (a)
	$12^2 + 35^2$			
	$\dots = 0.2 \times \frac{12 + 3.5}{1.2 + 3.5} = 0.5825(53)$	A1ft		PI condone 3dp
	$y(1.2) = y(1) + \frac{1}{2} [0.5 + 0.5825(53)]$	m1		
	= 3.54127 = 3.5413 to 4dp	A1ft	5	ft one slip
				If answer not to 4dp withhold this mark
	Total		8	
2(a)	IF is $e^{\int -\frac{2}{x} dx}$	M1		$e^{\int \pm \frac{2}{x} dx}$
	$-e^{-2\ln x}$	A1		P1
	- 0			
	$= e^{mx} = x^{-2} = \frac{1}{x^2}$	A1	3	AG Be convinced
(b)	$\frac{d}{d}\left(\frac{y}{y}\right) = \frac{1}{r}$	M1		LHS as $d/dx(y \times IF)$
	$dx\left(x^2\right)^{-}x^{2^{-x}}$	Δ1		PI
		711		11
	$\frac{y}{x^2} = \int \frac{1}{x} dx = \ln x + c$	A1		RHS Condone missing '+ c' here
	$y = x^2 \ln x + cx^2$	A1	4	
	Total		7	
3	Area = $\frac{1}{2}\int_{0}^{\pi} (2 + \cos\theta)^{2} \sin\theta \mathrm{d}\theta$	M1		use of $\frac{1}{2}\int r^2 d\theta$
		B1		Correct limits
	$= \frac{1}{2} \left[-\frac{1}{3} \left(2 + \cos \theta \right)^3 \right]_0^{\pi}$	M2		Valid method to reach $k(2+\cos\theta)^3$ or $a\cos\theta+b\cos2\theta+c\cos^3\theta$ OE {SC: M1 if expands then integrates to get either $a\cos\theta + b\cos2\theta$ OE or $c\cos^3\theta$ OE in a valid way}
		A1		OE eg $-4\cos\theta - \cos 2\theta - \frac{1}{3}\cos^3\theta$
	$=\frac{1}{2}\left\{-\frac{1}{3}+\frac{1}{3}\times3^{3}\right\}=\frac{13}{3}$	A1	6	CSO
	Total		6	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\int \ln x \mathrm{d}x = x \ln x - \int x \left(\frac{1}{x}\right) \mathrm{d}x$	M1		Integration by parts
	$=x\ln x - x + c$	A1	2	CSO AG
(b)	$\int_0^1 \ln x \mathrm{d}x = \frac{\lim}{a \to 0} \int_a^1 \ln x \mathrm{d}x$	M1		OE
	$= \lim_{a \to 0} \{0 - 1 - [a \ln a - a] \}$	M1		F(1) - F(a) OE
	But $\lim_{a \to 0} a \ln a = 0$	E1		Accept a general form eg $\lim_{a \to 0} a^k \ln a = 0$
	So $\int_0^1 \ln x \mathrm{d}x = -1$	A1	4	
	Total		6	
5(a)	When $\theta = \pi$, $r = \frac{2}{3 + 2\cos \pi} = \frac{2}{3 + 2(-1)} = 2$	B1	1	Correct verification
(b)(i)	$\frac{2}{3+2\cos\theta} = 1 \implies \cos\theta = -\frac{1}{2}$	M1		Equates <i>r</i> 's and attempts to solve.
	Points of intersection $\left(1,\frac{2\pi}{3}\right), \left(1,\frac{4\pi}{3}\right)$	A2,1	3	Condone eg $-2\pi/3$ for $4\pi/3$ A1 if either one point correct or two correct solutions of $\cos\theta = -0.5$
(ii)	Area $OMN = \frac{1}{2} \times 1 \times 1 \times \sin(\theta_M - \theta_N)$	M1		<u>ALT</u> $MN = 2 \times 1 \times \sin \frac{\pi}{3}$ M1
	$=\frac{1}{2}\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{4}$	A1		Perp. from L to MN = $2 - 1\cos\frac{\pi}{3} = \frac{3}{2}$ M1A1
	Area $OMLN = 2 \times \frac{1}{2} \times 1 \times 2 \times \sin \frac{\pi}{3}$	M1		Area $LMN = \frac{1}{2} \times \sqrt{3} \times \frac{3}{2} = \frac{3\sqrt{3}}{4}$ A1
	Area $LMN = \sqrt{3} - \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{4}$	A1	4	
(c)	$3r \pm 2r\cos\theta = 2$	M1		
	3r + 2r = 2	B1		$r\cos\theta - r$ stated or used
	3r = 2 - 2x	A1		3r = +(2-2r)
	$0(x^2 + x^2) = (2 - 2x)^2$	M1		$r^2 = r^2 + y^2$ used
	$9y^{2} = (2 - 2x)^{2} - 9x^{2}$	A1	5	CSO
				ACF for $f(x)$ eg $9y^2 = -5x^2 - 8x + 4$
	Total		13	

	G = 1 4'	M- 1	T-1	Carry t
<u> </u>	Solution 4	Marks	Total	Comments
6(a)(i)	$e^{2x} = 1 + 2x + 2x^2 + \frac{1}{2}x^3 + \dots$	M1		Clear use of $x \rightarrow 2x$ in
	5			expansion of e^{x}
		Al	2	ACF
(ii)	2			
(11)	$f(x) = e^{2x}(1+3x)^{-3}$			
	(1,2)(-5)			Einst three terms of
	$-\frac{2}{3}$ (2) $\left(-\frac{3}{3}\right)\left(-\frac{3}{3}\right)(3x)^{2}$ 40			(2)
	$(1+3x)^{-3} = 1 + \left -\frac{2}{3} \right (3x) + \frac{(-3)(-3)}{2} - \frac{10}{3} x^3$	M1		$1 + \left -\frac{2}{2} \right (3x) + kx^2 \text{ OE}$
	(3) 2 3			(3)
	1 $2 + 5 x^2 + 40 x^3$	A 1		
	$-1-2x+3x$ $-\frac{3}{3}x$	AI		
	$\{\mathbf{f}(x)\approx\}$			
	$40x^3$	m1		Dep on both prev MS
	$1+2x+2x^2+\frac{1}{3}-2x-4x^2-4x^3+5x^2+10x^3-\frac{1}{3}$	A1ft		Condone one sign or
	5			numerical slip in mult.
	$-1 + 2x^2 - 6x^3$	A 1	5	CSO AC A0 if
	-1+5x ox	AI	5	binominal series not used
				omoninal series not used
(b)(i)	dv 1	M1		Chain rule
(~)(-)	$y = \ln(1 + 2\sin x) \Rightarrow \frac{dy}{dx} = \frac{1}{1 + 2\sin x} \times 2\cos x$	A1		
	$dx = 1 + 2 \sin x$	M1		Quotient rule OF with
	$\frac{d^2 y}{dx^2} = \frac{(1+2\sin x)(-2\sin x) - 2\cos x(2\cos x)}{2\cos x(2\cos x)} = \frac{-2(\sin x + 2)}{2\cos x(2\cos x)}$	1011		<i>u</i> and <i>v</i> non constant
	dx^2 $(1+2\sin x)^2$ $(1+2\sin x)^2$	A1	4	ACF
(ii)	y(0) = 0, y'(0) = 2, y''(0) = -4	M1		
	$\begin{pmatrix} x^2 \end{pmatrix}$			
	McL Thm.: { $\ln(1+2\sin x)$ } $\approx 0 + 2x - 4 \left \frac{1}{2} \right + \approx 2x - 2x^2$	A1	2	CSO AG
(c)	$\lim_{x \to -5} 1 - f(x) = \lim_{x \to -3} -3x^2 + 6x^3$			
	$r \rightarrow 0 \frac{1}{r \ln(1 + 2\sin r)} = r \rightarrow 0 \frac{2r^2 - 2r^3}{2r^2 - 2r^3}$	M1		Using expansions
	$\frac{1}{2} \frac{1}{2} \frac{1}$			
	$=$ $\frac{1111}{-3+6x}$	m1		Division by r^2 stage
	$x \rightarrow 0 2 - 2x$			before taking limit.
	3			
	- 2	A1	3	CSO
	Total		16	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d}x}{\mathrm{d}x} = \mathrm{e}^t \{=x\}$	D1		OF
	d <i>t</i>			
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t} = \mathrm{e}^{-t} \frac{\mathrm{d}y}{\mathrm{d}t}$			Chain rule
	dx dt dx dt	711		OE eg $x \frac{dy}{dx} = \frac{dy}{dt}$
	$d^2 y = d(-dy) = dt d(-dy)$			d dt d
	$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(e^{-t} \frac{dy}{dt} \right) = \frac{dt}{dx} \frac{d}{dt} \left(e^{-t} \frac{dy}{dt} \right)$	M1		$\frac{d}{dx}() = \frac{d}{dx}\frac{d}{dt}()$ OE
	$\frac{dt}{dt} \begin{pmatrix} dy & d^2y \end{pmatrix}$			
	$= \frac{dt}{dx} \left[-e^{-t} \frac{dy}{dt} + e^{-t} \frac{dy}{dt^2} \right]$	M1		Product rule OE
	$\begin{pmatrix} dy & d^2y \end{pmatrix}$			
	= $e^{-t} \left -e^{-t} \frac{dy}{dt} + e^{-t} \frac{dy}{dt^2} \right $	A1		OE
	$\begin{pmatrix} u & u^2 \end{pmatrix}$			
	$\dots = x^{-2} \left[-\frac{dy}{dt} + \frac{d^2 y}{dt^2} \right]$			
	$\begin{pmatrix} di & di \end{pmatrix}$			
	$\Rightarrow x^2 \frac{d^2 y}{d^2 2} = \left(\frac{d^2 y}{d^2 2} - \frac{dy}{d^2}\right)$	A1	7	CSO AG Completion. Be convinced
	$dx^2 \left(dt^2 - dt \right)$			_
(b)	$r^2 \frac{d^2 y}{d^2 y} - 4r \frac{dy}{d^2 y} = 10$			
	$dx^2 = dx dx^{-10}$			
	$\left(\frac{d^2 y}{d^2 y} - \frac{dy}{dy}\right) - 4\left(\frac{dy}{dy}\right) = 10$	M1		
	$\left(dt^2 - dt \right) = \left(dt \right)$			
	$\frac{d^2 y}{d^2 y} - 5\frac{d y}{d y} = 10$	Δ 1	2	CSO AG Completion Reconvinced
	$dt^2 dt$	AI	2	CSO AG completion. Be convinced
(c)	$d^2 y = dy$			
	$\frac{d^2 y}{dt^2} - 5\frac{dy}{dt} = 10 (*)$			
	Auxl eqn $m^2 - 5m = 0$	M1		PI
	m(m-5) = 0			
	m = 0 and 5	A1		
	CF: $(y_c =)A + Be^{5t}$	M1		ft wrong values of <i>m</i> provided 2 arb.
	PI: $(y_p =) - 2t$	B1		constants in C_{Γ} . condone x for t here
	GS of (*) $\{y\} = A + B e^{5t} - 2t$	B1ft	5	ft on c's CF + PI, provided PI is non-zero
		-		and CF has two arbitrary constants
(d)	$\Rightarrow y = A + Bx^5 - 2 \ln x$	M1		
()	$y'(x) = 5Bx^4 - 2x^{-1}$	A1ft		Must involve differentiating $a \ln x$ ft slip
	Using boundary conditions to find A & B	M1		
	$B = 2; A = -2; \{ y = -2 + 2x^5 - 2\ln x \}$	A1;A1ft	5	ft a slip.
	Total		19	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1(a)	$y(3.1) = y(3) + 0.1\sqrt{3^2 + 2 + 1}$	M1A1		
	$= 2 + 0.1 \times \sqrt{12} = 2.3464(10) \\= 2.3464$	A1	3	Condone > 4dp if correct
(b)	y(3.2) = y(3) + 2(0.1)[f(3.1, y(3.1))]	M1		
	$\dots = 2 + 2(0.1)[\sqrt{(3.1^2 + 2.3464 + 1)}]$	A1F		ft on candidate's answer to (a)
	= 2 + 0.2×3.599499 = 2.719(89) = 2.720	A1	3	CAO Must be 2.720
-	Total		6	
2	IF is $e^{\int -\tan x dx}$	M1		Award even if negative sign missing
	$= e^{\ln(\cos x) (+c)}$	A1		OE Condone missing c
	$=(k)\cos x$	A1F		ft earlier sign error
	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} - y \tan x \cos x = 2\sin x \cos x$			
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\cos x) = 2\sin x \cos x$	M1		LHS as $\frac{d}{dx}(y \times IF)$ PI
	$y\cos x = \int 2\sin x \cos x \mathrm{d}x \mathrm{d}x$	A1F		ft on c's IF provided no exp or logs
	$y\cos x = \int \sin 2x \mathrm{d}x$	ml		Double angle or substitution OE for integrating $2\sin x \cos x$
	$y\cos x = -\frac{1}{2}\cos 2x(+c)$	A1		ACF
	$2 = -\frac{1}{2} + c$	m1		Boundary condition used to find c
	$c = \frac{5}{2}$			
	$y\cos x = -\frac{1}{2}\cos 2x + \frac{5}{2}$	A1	9	ACF eg $y \cos x - 2 + \sin^2 x$
	Tatal		0	Apply ISW after ACF
	1 otal		9	

MFP3 (cont)	1		
Q	Solution	Marks	Total	Comments
3 (a)	Centre of circle is $M(3, 4)$	B1		PI
	<i>A</i> (6, 8)	B1	2	
(b)(i)	k = OA = 10	B1		
	$\tan \alpha = \frac{y_A}{x_A} = \frac{4}{3}$	B1	2	SC " $r = 10$ and $\tan \theta = \frac{8}{6}$ " = B1 only
(b)(ii)	$x^2 + y^2 - 6x - 8y + 25 = 25$	B1		If polar form before expansion award the B1 for correct expansions of both $(r\cos\theta - m)^2$ and $(r\sin\theta - n)^2$ where
	$r^2 - 6r\cos\theta - 8r\sin\theta = 0$	M1M1		$(m,n) = (3,4) \operatorname{or} (m,n) = (4,3)$ 1st M1 for use of any one of $x^2 + y^2 = r^2$, $x = r \cos \theta$, $y = r \sin \theta$
				2nd M1 for use of these to convert the form $x^2 + y^2 + ax + by = 0$ correctly to the form $r^2 + ar \cos \theta + br \sin \theta = 0$
	$\{r = 0, \text{ origin}\}$ Circle: $r = 6\cos\theta + 8\sin\theta$	A1	4	NMS Mark as 4 or 0
	ALTn			
	Circle has eqn $r = OA \cos(\alpha - \theta)$	(M2)		
	$r = OA\cos\alpha\cos\theta + OA\sin\alpha\sin\theta$	(m1)		OE
	Circle: $r = 6\cos\theta + 8\sin\theta$	(A1)		
	Total		8	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
4	$\int \left(\frac{1}{x} - \frac{4}{4x+1}\right) dx = \ln x - \ln (4x+1) \{+c\}$	B1		OE
	$I = \lim_{a \to \infty} \int_{1}^{a} \left(\frac{1}{x} - \frac{4}{4x+1}\right) dx$	M1		∞ replaced by <i>a</i> (OE) and $\lim_{a \to \infty}$
	$= \lim_{a \to \infty} \left[\ln x - \ln(4x+1) \right]_{1}^{a}$			
	$= \lim_{a \to \infty} \left[\ln \left(\frac{a}{4a+1} \right) - \ln \frac{1}{5} \right]$	m1		$\ln a - \ln (4a+1) = \ln \left(\frac{a}{4a+1}\right)$
				and previous M1 scored
	$= \lim_{a \to \infty} \left[\ln \left(\frac{1}{4 + \frac{1}{a}} \right) - \ln \frac{1}{5} \right]$	m1		$\ln\left(\frac{a}{4a+1}\right) = \ln\left(\frac{1}{4+\frac{1}{a}}\right)$ and
				previous M1m1 scored
	$= \ln \frac{1}{4} - \ln \frac{1}{5} = \ln \frac{5}{4}$	A1	5	CSO
	Total		5	
5(a)	$-k\sin x + 2k\cos x + 5k\sin x = 8\sin x + 4\cos x$	M1		Differentiation and subst. into DE
	k - 2	AI A1	3	
(b)	Auxl eqn $m^2 + 2m + 5 = 0$		5	
	$m = \frac{-2 \pm \sqrt{4 - 20}}{2}$	M1		Formula or completing sq. PI
	$m = -1 \pm 2$ i	A1		
	CF: $\{y_c\} = e^{-x} (A \sin 2x + B \cos 2x)$	AlF		ft provided <i>m</i> is not real
	GS {y} = $e^{-x}(A\sin 2x + B\cos 2x) + k\sin x$ When $x = 0, y = 1 \Rightarrow B = 1$	B1F B1F		ft on CF + PI; must have 2 arb consts
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}^{-x}(A\sin 2x + B\cos 2x)$	M1		Droduct rule
	$+e^{-x}(2A\cos 2x-2B\sin 2x)+k\cos x$	IVI 1		Product rule
	When $x = 0$, $\frac{dy}{dx} = 4 \Longrightarrow 4 = -B + 2A + k$	A1		PI
	$\Rightarrow A = \frac{3}{2}$			
	$y = e^{-x} \left(\frac{3}{2}\sin 2x + \cos 2x\right) + 2\sin x$	A1	8	CSO
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$f(x) = \left(9 + \tan x\right)^{\frac{1}{2}}$			
	so $f'(x) = \frac{1}{2} (9 + \tan x)^{-\frac{1}{2}} \sec^2 x$	M1 A1		Chain rule
	$f''(x) = -\frac{1}{4} (9 + \tan x)^{-\frac{2}{2}} \sec^4 x$	M1		Product rule, OE
	$+\frac{1}{2}(9+\tan x)^{-2}(2\sec^2 x\tan x)$	A1	4	ACF
(a)(ii)	f(0) = 3	B1		
	f'(0) = $\frac{1}{2}(9)^{-\frac{1}{2}} = \frac{1}{6}$; f''(0) = $-\frac{1}{4}(9)^{-\frac{3}{2}} = -\frac{1}{108}$	M1		Both attempted and at least one correct ft on c's f'(x) and f''(x)
	$f(x) \approx f(0) + x f'(0) + \frac{1}{2}x^2 f''(0)$ $(9 + \tan x)^{\frac{1}{2}} \approx 3 + \frac{x}{6} - \frac{x^2}{216}$	A1	3	CSO AG
(b)	$\frac{f(x)-3}{\sin 3x} \approx \frac{\frac{x}{6} - \frac{x^2}{216} \dots}{3x - \frac{(3x)^3}{3!} \dots}$	M1		Using series expns.
	$\approx \frac{\frac{1}{6} - \frac{x}{216}}{3 - \dots}$	m1		Dividing numerator and denominator by a to get constant term in each
	$\lim_{x \to 0} \left[\frac{f(x) - 3}{\sin 3x} \right] = \frac{1}{18}$	A1	3	
	Total		10	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	Area = $\frac{1}{2} \int \left(1 + 6e^{-\frac{\theta}{\pi}} \right)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$=\frac{1}{2}\int_{0}^{2\pi}\left(1+12\mathrm{e}^{-\frac{\theta}{\pi}}+36\mathrm{e}^{-\frac{2\theta}{\pi}}\right)\mathrm{d}\theta$	B1		Correct expansion of $\left(1+6e^{-\frac{\theta}{\pi}}\right)^2$
		B1		Correct limits
	$=\frac{1}{2}\left[\theta-12\pi\mathrm{e}^{-\frac{\theta}{\pi}}-18\pi\mathrm{e}^{-\frac{2\theta}{\pi}}\right]_{0}^{2\pi}$	m1		Correct integration of at least two of the
				three terms 1, $p \in a$, $q \in a$
	$=\pi (16-6e^{-2}-9e^{-4})$	A1	5	ACF
(b)		B1		Going the correct way round the pole
		B1		Increasing in distance from the pole
	End-points $(1, 0)$ and $(e^2, 2\pi)$	B2,1,0	4	Correct end-points B1 for each pair or for 1 and e ² shown on graph in correct positions
(c)	$e^{\frac{\theta}{\pi}} = 1 + 6 e^{-\frac{\theta}{\pi}}$	M1		Elimination of <i>r</i> or θ $[r = 1 + \frac{6}{r}]$
	$\left(e^{\frac{\theta}{\pi}}\right)^2 - e^{\frac{\theta}{\pi}} - 6 = 0$	m1		Forming quadratic in $e^{\frac{\theta}{\pi}}$ or in $e^{-\frac{\theta}{\pi}}$ or in <i>r</i> . $[r^2 - r - 6 = 0]$
	$\left(\frac{\theta}{e^{\pi}} - 3\right)\left(\frac{\theta}{e^{\pi}} + 2\right) = 0$	m1		OE
	$e^{\frac{\pi}{n}} > 0$ so $e^{\frac{\pi}{n}} = 3$	E1		Rejection of negative 'solution' PI $[r-3]$
	Polar coordinates of <i>P</i> are $(3, \pi \ln 3)$	A1	5	$\begin{bmatrix} \mu - 5 \end{bmatrix}$
	Total		14	
L	_ • • • • •	1		1

MFP3 (c	cont)
---------	-------

Q	Solution	Marks	Total	Comments
8(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$	B1		PI or for $\frac{dt}{dx} = \frac{1}{2} x^{-\frac{1}{2}}$
	$\frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	M1		OE Chain rule $\frac{dy}{dx} = \dots$ or $\frac{dy}{dt} = \dots$
	$2t\frac{dy}{dx} = \frac{dy}{dt}$ so $2\sqrt{x} \frac{dy}{dx} = \frac{dy}{dt}$	A1	3	AG
(a)(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(2\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{\mathrm{d}t}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)$	M1		$\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{f}(t)) = \frac{\mathrm{d}t}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}(t)) \operatorname{OE}$
				eg $\frac{d}{dt}(g(x)) = \frac{dx}{dt} \frac{d}{dx}(g(x))$
	$2\sqrt{x}\frac{d^{2}y}{dx^{2}} + x^{-\frac{1}{2}}\frac{dy}{dx} = \frac{1}{2t}\frac{d^{2}y}{dt^{2}}$	M1		Product rule OE
	$4t\sqrt{x}\frac{d^{2}y}{dx^{2}} + 2tx^{-\frac{1}{2}}\frac{dy}{dx} = \frac{d^{2}y}{dt^{2}}$			
	$\Rightarrow 4x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = \frac{d^2 y}{dt^2}$	A1	3	AG Completion
(b)	$4x \frac{d^2 y}{dx^2} + 2(1+2\sqrt{x}) \frac{dy}{dx} - 3y = 0$			
	$(4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx}) + 2(2\sqrt{x}\frac{dy}{dx}) - 3y = 0$			
	$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} - 3y = 0$	M1 A1	2	Use of either (a)(i) or (a)(ii) AG Completion
(c)	$\frac{d^2 y}{d^2 y} + 2 \frac{d y}{d^2 - 3 y = 0}$ (*)			
	$\frac{dt^{2}}{dt} + \frac{2}{dt} \frac{dt}{dt} + \frac{3y-6}{2} + 3y-$			
	(m+3)(m-1) = 0	M1		PI
	m = -3 and 1	A1		PI
	GS of (*) $\{y\} = Ae^{-3x} + Be^{3x}$	M1		$Ae^{-3x} + Be^{x}$ scores M0 here
	$\Rightarrow y = A e^{-3\sqrt{x}} + B e^{\sqrt{x}}$	A1	4	
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3				
Q	Solution	Marks	Total	Comments
1(a)	$y_1 = 2 + 0.1 \times [3\ln(2 \times 3 + 2)] = 2 + 0.3\ln 8$			
	= 2.6238(3)	M1A1		
	y(3.1) = 2.6238 (to 4dp)	A1	3	Condone greater accuracy
		D1E		DI ft from (a) Adn or botton
(0)	$k_1 = 0.1 \times 3 \ln 8 = 0.6238(32)$			P1 It from (a), 4ap of better
	$k_2 = 0.1 \times f(3.1, 2.6238(32))$	MI		
	$\dots = 0.1 \times 3.1 \times \ln 8.8238(32)$	AIF		PI; ft on $0.1 \times 3.1 \times \ln[6.2 + \operatorname{answer}(a)]$
	[= 0.6750(1)			
	$y(3.1) = 2 + \frac{1}{2} [0.6238(3) + 0.6750(1)]$	m1		
	= 2.6494(2) = 2.6494 to 4dp	A1	5	CAO Must be 2.6494
	Total		8	
2(a)	dy = 1			
	$\frac{1}{dx} = \frac{1}{4+3x} \times 5$	M1		Chain rule
	- 2			
	$\frac{d^2 y}{dx^2} = -3(4+3x)^{-2} \times 3 = -9(4+3x)^{-2}$	M1A1	3	M1 for quotient (PI) or chain rule used
	dx^2		5	for for quotient (11) of enamerate used
	1	M1		Clear attempt to use Meeleurin's theorem
(U)	$\ln (4+3x) = \ln 4 + y'(0) x + y''(0) \frac{1}{2}x^2 + \dots$	111		with numerical values for $y'(0)$ and $y''(0)$
	2			······································
	First three terms: $\ln 4 + \frac{5}{4}x - \frac{9}{22}x^2$	A1F	2	ft on c's answers to (a) provided $v'(0)$ and
	4 32			$y''(0) \text{ are } \neq 0.$ Accept 1.38(6) for ln4
(c)	$\ln (4-3x) = \ln 4 - \frac{3}{2}x - \frac{9}{2}x^2$	DIE	1	f_{1} f_{2} f_{3} f_{3} f_{3} f_{3} f_{3} f_{3} f_{3}
	4 32	BIL	1	If $x \to -x$ in c s answer to (b)
(b)	(1+2n)			
(u)	$\ln \left(\frac{4+3x}{4-2} \right) = \ln(4+3x) - \ln(4-3x)$	M1		
	(4-3x)			
	$\approx \ln 4 + \frac{3}{4}x - \frac{9}{32}x^2 - \ln 4 + \frac{3}{4}x + \frac{9}{32}x^2$			
	$\frac{3}{2}r$	Δ1	2	CSO AG
	2~			
	Total		8	

PMT

٦

Μ	IFP3 (cor	nt)			
	Q			Solution	
	3 (a)	1	1	12	

Q	Solution	Marks	Total	Comments
3 (a)	$u = \frac{\mathrm{d}y}{\mathrm{d}x} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	M1		
	$ax dx dx dx$ $x\frac{du}{dx} + 2u = 3x \Longrightarrow \frac{du}{dx} + \frac{2}{x}u = 3$	A1	2	CSO AG Substitution into LHS of DE and completion
3(b)	IF is exp $\left(\int \frac{2}{x} dx\right)$	M1		exp $(\int \frac{k}{x} dx)$, for $k = \pm 2, \pm 1$ and integration attempted
	$= e^{2\ln x}; = x^2$	A1;A1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(ux^2) = 3x^2$	M1		LHS as differential of $u \times IF$
	$ux^2 = x^3 + A \Longrightarrow u = x + Ax^{-2}$	A1	5	Must have an arbitrary constant
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x + Ax^{-2}$	M1		and with integration attempted
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x + Ax^{-2} \implies y = \frac{1}{2}x^2 - \frac{A}{x} + B$	A1F	2	ft only if IF is M1A0A0
	Total		9	
4(a)	$\sin 3x = 3x - \frac{1}{3!}(3x)^3 + = 3x - 4.5x^3 + \dots$	B1	1	
(b)	$\cos 2x = 1 - \frac{1}{2!}(2x)^2 + \dots$	B1		
	$\lim_{\substack{x \to 0 \\ x \to 0}} \left[\frac{3x \cos 2x - \sin 3x}{5x^3} \right] =$ $\lim_{x \to 0} \frac{3x - 6x^3 - 3x + 4.5x^3 + \dots}{5x^3}$	M1		Using expansions
	$= \lim_{\substack{x \to 0 \\ 3}} \frac{-1.5 + (o(x^2))}{5}$	m1		Division by x^3 stage to reach relevant form of quotient before taking limit.
	$=-\frac{5}{10}$	A1	4	CSO OE
	Total		5	

MFP3 (cont)					
Q	Solution	Marks	Total	Comments	
5(a)	$y_{\rm PI} = pxe^{-2x} \Rightarrow \frac{dy}{dx} = pe^{-2x} - 2pxe^{-2x}$	M1		Product Rule used	
	$\Rightarrow \frac{d^2 y}{dx^2} = -2pe^{-2x} - 2pe^{-2x} + 4pxe^{-2x}$	A1			
	$-4pe^{-2x} + 4pxe^{-2x} + 3pe^{-2x} - 6pxe^{-2x} + 2pxe^{-2x} = 2e^{-2x}.$	M1		Sub. into DE	
	$-pe^{-2x} = 2e^{-2x} \implies p = -2$	A1F	4	ft one slip in differentiation	
5(b)	Aux. eqn. $m^2 + 3m + 2 = 0$ $\Rightarrow m = -1, -2$	B1			
	CF is $Ae^{-x} + Be^{-2x}$	M1		ft on real values of <i>m</i> only	
	GS $y = Ae^{-x} + Be^{-2x} - 2xe^{-2x}$.	B1F		Their CF + their PI must have 2 arb consts	
	When $x = 0$, $y = 2 \Longrightarrow A + B = 2$	B1F		Must be using GS; ft on wrong non- zero values for p and m	
	$\frac{dy}{dx} = -Ae^{-x} - 2Be^{-2x} - 2e^{-2x} + 4xe^{-2x}$	B1F		Must be using GS; ft on wrong non- zero values for p and m	
	When $x = 0$, $\frac{dy}{dx} = 0 \implies -A - 2B - 2 = 0$	B1F		Must be using GS; ft on wrong non- zero values for p and m and slips in	
	Solving simultaneously, 2 eqns each in two	m1		finding $y'(x)$	
	$A = 6, B = -4; y = 6e^{-x} - 4e^{-2x} - 2xe^{-2x}.$	A1	8	CSO	
	Total		12		

MFP3 (cor	MFP3 (cont)					
Q	Solution	Marks	Total	Comments		
6(a)	The interval of integration is infinite	E1	1	OE		
(b)(i)	$x=\frac{1}{y} \implies dx=-y^{-2} dy'$					
	$\int \frac{\ln x^2}{x^3} dx \Longrightarrow \int (y^3 \ln y^{-2}) \left(-y^{-2}\right) dy$	M1				
	$= \int -y \ln y^{-2} \mathrm{d}y = \int 2y \ln y \mathrm{d}y$	A1	2	CSO AG		
(ii)	$\int 2y \ln y dy = y^2 \ln y - \int y^2 \left(\frac{1}{y}\right) dy$	M1		= $ky^2 \ln y \pm \int f(y) dy$ with $f(y)$ not involving the 'original' ln y		
	1	A1				
	$\dots = y^2 \ln y - \frac{1}{2} y^2 + c$	A1		Condone absence of '+ c '		
	$\int_0^1 2y \ln y dy = \frac{\lim_{a \to 0} \int_a^1 2y \ln y dy}{a \to 0}$					
	$= \left(0 - \frac{1}{2}\right) - \frac{\lim}{a \to 0} \left[a^2 \ln a - \frac{a^2}{2}\right]$	M1				
	$= -\frac{1}{2} \text{ since } \lim_{a \to 0} a^2 \ln a = 0$	A1	5	CSO Must see clear indication that cand has correctly considered $\lim_{a \to 0} a^k \ln a = 0$		
(iii)	So $\int_1^\infty \frac{\ln x^2}{x^3} dx = \frac{1}{2}$	B1F	1	ft on minus c's value as answer to (b)(ii)		
	Total		9			
7	Aux. eqn. $m^2 + 4 = 0 \implies m = \pm 2i$	B1				
	CF is $A\cos 2x + B\sin 2x$	M1		OE. If <i>m</i> is real give M0		
		AlF		ft on incorrect complex value for m		
	PI: Try $ax^2 + b$	M1		Award even if extra terms, provided		
	+csinx	M1		the relevant coefficients are shown to		
	2 · · · · 2 · · · · · · · · · · · · · ·			be zero.		
	$2a - c\sin x + 4ax^2 + 4b + 4c\sin x = 8x^2 + 9\sin x$					
	$a = 2, \ b = -1,$	A1		Dep on relevant M mark		
	<i>c</i> = 3	A1		Dep on relevant M mark		
	$(y =) A\cos 2x + B\sin 2x + 2x^2 - 1 + 3\sin x$	B1F	8	Their CF + their PI. Must be exactly two arbitrary constants		
	Total		8			

Q	Solution	Marks	Total	Comments
8(a)	$4\sin\theta(1-\sin\theta)=1$	M1		Elimination of <i>r</i> or $\theta \{ r = 4[1-(1/r)] \}$
	$4\sin^2\theta - 4\sin\theta + 1 = 0$	A1		$\{ r^2 - 4r + 4 = 0 \}$
	$(2\sin\theta - 1)^2 = 0 \Longrightarrow \sin\theta = 0.5$	m1		Valid method to solve quadratic eqn. PI { $(r-2)^2 = 0 \Rightarrow r = 2$ }
	$\theta = \frac{\pi}{6}, \ \theta = \frac{5\pi}{6}, r = 2$	A2,1		A1 for any two of the three.
	$\left[P\left(2, \frac{\pi}{6}\right) Q\left(2, \frac{5\pi}{6}\right)\right]$		5	SC: Verification of $P\left(2, \frac{\pi}{6}\right)$ scores max
			5	of B1 & a further B1 if $Q\left(2, \frac{5\pi}{6}\right)$ stated
8(b)	Area triangle OPQ = $\frac{1}{2} \times 2 \times r_Q \times \sin POQ$	M1		Any valid method to correct (ft eg on r_Q) expression with just one remaining unknown
	Angle $POQ = \frac{5\pi}{6} - \frac{\pi}{6} \left(=\frac{2\pi}{3}\right)$	m1		Valid method to find remaining unknown either relevant angle or relevant side
	Area triangle $OPQ = 2\sin\frac{2\pi}{3} = \sqrt{3}$	A1		
	Unshaded area bounded by line OP and			
	arc $OP = \frac{1}{2} \int_{\pi}^{\frac{\pi}{2}} [4(1-\sin\theta)]^2 d\theta$	MI		Use of $\frac{1}{2}\int r^2 d\theta$ for relevant area(s)
	$\frac{2}{6}$	D1		(condone missing/wrong limits)
	$= 8 \int \left(1 - 2\sin\theta + \sin^2\theta \right) \mathrm{d}\theta$	BI		Correct expn of $(1 - \sin\theta)$
	$= 8 \int \left(1 - 2\sin\theta + \frac{1 - \cos 2\theta}{2} \right) \mathrm{d}\theta$	M1		Attempt to write $\sin^2 \theta$ in terms of $\cos 2\theta$
	$= 8 \left[\theta + 2\cos\theta + \frac{\theta}{2} - \frac{\sin 2\theta}{4} \right] (+c)$	A1F		Correct integration ft wrong coeffs
	$8\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1-\sin\theta)^2 \mathrm{d}\theta =$			
	$8 \times \left[\frac{3\theta}{2} + 2\cos\theta - \frac{\sin 2\theta}{4}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$			
	$= 8 \times \{\frac{3\pi}{4} - \left(\frac{3\pi}{12} + 2\cos\frac{\pi}{6} - \frac{1}{4}\sin\frac{2\pi}{6}\right)\}$	m1		$F\left(\frac{\pi}{2}\right) - F\left(\frac{\pi}{6}\right) OE$ for relevant area(s)
	$= 8 \times \left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right) \{= 4 \pi - 7 \sqrt{3} \}$	A1F		ft one slip; accept terms in π and $\sqrt{3}$ left unsimplified
	Shaded area = Area of triangle <i>OPQ</i> –			
	$2 \times \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[4\left(1-\sin\theta\right)\right]^2 \mathrm{d}\theta$	M1		OE
	Shaded area =			
	$\sqrt{3} - 16\left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right) = 15\sqrt{3} - 8\pi$	A1	11	CSO Accept $m = 15$, $n = -8$
	Total		16	
	TOTAL		75	

Version 1.0

General Certificate of Education June 2010

Mathematics

MFP3

Further Pure 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is	for method and a	accuracy				
Е	mark is for explanation						
$\sqrt{10}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

PMT

Q	Solution	Marks	Total	Comments
1(a)	$y(1.1) = y(1) + 0.1 [1 + 3 + \sin 1]$	M1A1		
(b)	$= 1 + 0.1 \times 4.84147 = 1.4841(47)$ = 1.4841 to 4dp $y(1.2) = y(1) + 2(0.1) \{f[1.1, y(1.1)]\}$	A1 M1	3	Condone > 4dp
	$\dots = 1 + 2(0.1)\{1.1 + 3 + \sin[1.4841(47)]\}$ = 2.019 to 3dp	A1F A1	3	Ft on cand's answer to (a) CAO Must be 2.019 Note: If using degrees max mark is 4/6 ie M1A1A0;M1A1FA0
	Total		6	
2(a)	$-4k\sin 2x + k\sin 2x = \sin 2x$	M1 A1		Substituting into the differential equation
	$k = -\frac{1}{3}$	A1	3	Accept correct PI
(b)	(Aux. eqn $m^2 + 1 = 0$) $m = \pm i$ CF: $A \cos x + B \sin x$	B1 M1 A1F		PI M0 if <i>m</i> is real OE Ft on incorrect complex values for <i>m</i> For the A1F do not accept if left in the form $Ae^{ix} + Be^{-ix}$
	(GS: $y =$) $A\cos x + B\sin x - \frac{1}{3}\sin 2x$	B1F	4	c's CF +c's PI but must have 2 constants
	Total		7	
3 (a)	The interval of integration is infinite	E1	1	OE
(b)	$\int 4x e^{-4x} dx = -x e^{-4x} - \int -e^{-4x} dx$	M1 A1		$kxe^{-4x} - \int ke^{-4x} dx$ for non-zero k
	$= -xe^{-x}e^{-x}e^{-x} \{+c\}$	A1F	3	Condone absence of $+c$
(c)	$I = \int_{1}^{\infty} 4x e^{-4x} dx = \lim_{a \to \infty} \int_{1}^{a} 4x e^{-4x} dx$ $\lim_{a \to \infty} \{-a e^{-4a} - \frac{1}{4} e^{-4a}\} - \left[-\frac{5}{4} e^{-4}\right]$	M1		F(a) - F(1) with an indication of limit ' $a \rightarrow \infty$ '
	$\lim_{a \to \infty} a e^{-4a} = 0$	M1		For statement with limit/ limiting process shown
	$I = \frac{5}{4}e^{-4}$	A1	3	CSO
	Total		7	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
4	IF is exp $\left(\int \frac{3}{x} dx\right)$	M1		and with integration attempted
	$= e^{3\ln x}$ $= x^{3}$	A1 A1		РІ
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[yx^3 \right] = x^3 \left(x^4 + 3 \right)^{\frac{3}{2}}$	M1 A1		LHS. Use of c's IF. PI
	$\Rightarrow yx^3 = \frac{1}{10} \left(x^4 + 3 \right)^{\frac{5}{2}} + A$	m1 A1		$k(x^{4}+3)^{\frac{5}{2}}$ Condone missing 'A'
	$\Rightarrow \frac{1}{5} = \frac{1}{10} (4)^{\frac{5}{2}} + A$	m1		Use of boundary conditions in attempt to find constant after intgr. Dep on two M marks, not dep on m
	$\Rightarrow A = -3; \qquad (*)$ $\Rightarrow yx^{3} = \frac{1}{10} \left(x^{4} + 3\right)^{\frac{5}{2}} - 3$	A1	9	ACF. The A1 can be awarded at line (*) provided a correct earlier eqn in <i>y</i> , <i>x</i> and 'A' is seen immediately before boundary conditions are substituted.
	Tota	1	9	

MFP3 (con	t)			
Q	Solution	Marks	Total	Comments
5 (a)	$(4x)^2 (4x)^4$	M1		Clear attempt to replace <i>x</i> by $4x$ in
	$\cos 4x \approx 1 - \frac{\sqrt{7}}{2} + \frac{\sqrt{7}}{4!} \dots$			expansion of cos <i>x</i> condone
	2 T.	A 1	2	missing brackets for the M mark
	$\approx 1 - 8x^2 + \frac{32}{2}x^4 \dots$	AI	2	
	3			
(b)(i)	$dy = 1$ $\chi(-2^x)$	M1		Chain rule
	$\frac{1}{dx} = \frac{1}{2 - e^x} \times (-e^x)$	A1		
	$d^2 v = (2 - e^x)(-e^x) - (-e^x)(-e^x)$	M1		Quotient rule OE
	$\frac{d^2 y}{dr^2} = \frac{(2^2 c^2 (1 + c^2))^2}{(2 - r^2)^2}$	A1		ACF
	$dx \qquad (2-e^x)$			
	$-2e^x$			
	$(2 - e^{x})^{2}$			
	$(2 + 1)^{2}(-2 + 1)($	m1		All necessary rules attempted
	$\frac{d^2 y}{d^2} = \frac{(2 - e^2)(-2e^2) - (-2e^2)(2(2 - e^2)) - (-e^2)}{(2(2 - e^2))(-e^2)}$			(dep on previous 2 M marks)
	dx^3 $(2-e^x)^4$			
		A1	6	ACF
(**)	r(0) = 0, r(0) = 1, r(0) = 2, r(0) = 0	MI		At least three attempted
(11)	y(0) = 0; y(0) = -1; y(0) = -2; y(0) = -6	IVI I		At least three attempted
	$\operatorname{Ln}(2-e^{x})\approx y(0)+xy'(0)+\frac{x^{2}}{2}y''(0)+\frac{x^{3}}{6}y'''(0)\dots$			
	2 0	A 1	2	
	$\ldots \approx -x - x - x - x \ldots$	AI	2	CSO AG (The previous / marks
				double errors seen)
(c)	$\left[r\ln(2-e^{x})\right] - r^{2} - r^{3} - r^{4}$			
	$\left \frac{x \ln(2 - c)}{1 - \cos 4x}\right \approx \frac{x - x - x - x}{32}$			
	$\begin{bmatrix} 1 - \cos 4x \end{bmatrix} = 8x^2 - \frac{32}{2}x^4$	M1		Using the expansions
	5			The notation $a(x^n)$ can be
	$\text{Limit} = \frac{\text{IIm}}{2} \frac{-x^2 - o(x^2)}{2}$			replaced by a term of the form
	$x \to 0 \ 8x^2 - o(x^4)$			kx^n
	$\lim_{x \to 0} -1 - \rho(x)$			
	$\dots = \frac{1}{r} + \frac{1}{2} \frac{1}{r} \frac{1}{r$	m1		Division by x^2 stage before
	$x \rightarrow 0 \ 0 - 0(x)$			taking the limit
	1			-
	$\dots = -\frac{1}{8}$	A1	3	CSO
	Total		13	

MFP3 (cont)			
Q	Solution	Marks	Total	Comments
6(a)(i)	$x^2 + y^2 = r^2$, $x = r \cos \theta$, $y = r \sin \theta$	B2,1,0		B1 for one stated or used
	$r^2 = 2r(\cos\theta - \sin\theta)$	M1		
	$x^2 + y^2 = 2(x - y)$	A1	4	ACF
(ii)	$(x-1)^2 + (y+1)^2 = 2$	M1 A1F		
	Centre $(1, -1)$; radius $\sqrt{2}$	A1F	3	
(b)(i)	Area = $\frac{1}{2}\int (4 + \sin\theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$.
	$= \frac{1}{2} \int_{0}^{2\pi} (16 + 8\sin\theta + \sin^2\theta) d\theta$	B1 B1		Correct expn of $[4+\sin\theta]^2$ Correct limits
	$= \int_{0}^{2\pi} (8 + 4\sin\theta + 0.25(1 - \cos 2\theta)) d\theta$	M1		Attempt to write $\sin^2 \theta$ in terms of $\cos 2\theta$
	$= \left 8\theta - 4\cos\theta + \frac{1}{4}\theta - \frac{1}{8}\sin 2\theta \right _{0}^{2\pi}$	A1F		Correct integration ft wrong coefficients
	$=16.5\pi$	A1	6	CSO
(ii)	For the curves to intersect, the eqn $2(\cos \theta - \sin \theta) = 4 + \sin \theta$ must have a solution.	M1		Equating rs and simplifying to a suitable form
	$R\cos(\theta + \alpha) = 4,$	M1		OE. Forming a relevant eqn from which valid explanation can be stated directly
	where $R = \sqrt{2^2 + 3^2}$ and $\cos \alpha = \frac{2}{R}$	A1		OE. Correct relevant equation
	$\cos(\theta + \alpha) = \frac{4}{\sqrt{13}} > 1$. Since must have			
	$-1 \le \cos X \le 1$ there are no solutions of			
	the equation $2(\cos\theta - \sin\theta) = 4 + \sin\theta$	E1	4	Accept other valid explanations.
	so the two curves do not intersect.			
(iii)	Required area =			
	answer (b)(i) – π (radius of C ₁) ²	M1		
	$= 16.5\pi - 2\pi = 14.5\pi$	A1F	2	Ft on (a)(ii) and (b)(i)
	Total		19	

PMT

MFP3 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	dx dy dy			
	$\frac{dt}{dt} \frac{dt}{dx} = \frac{dt}{dt}$	M1		OE Chain rule
	$\frac{1}{2}t^{-\frac{1}{2}}\frac{dy}{dx} = \frac{dy}{dt} \text{so } \frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt}$	A1	2	CSO A.G.
(a)(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{\mathrm{d}t}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}t} \left(2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t} \right)$	M1		$\frac{d}{dx}(f(t)) = \frac{dt}{dx}\frac{d}{dt}(f(t))$ O.E. eg $\frac{d}{dt}(g(x)) = \frac{dx}{dt}\frac{d}{dt}(g(x))$
	$\frac{d^2 y}{dx^2} = 2t^{\frac{1}{2}} \left[2t^{\frac{1}{2}} \frac{d^2 y}{dt^2} + t^{-\frac{1}{2}} \frac{dy}{dt} \right]$	m1		Product rule O.E. used dep on previous M1 being awarded at some stage
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4t \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2 \frac{\mathrm{d}y}{\mathrm{d}t}$	A1	3	CSO A.G.
(b)	$t^{\frac{1}{2}} \left[4t \frac{d^2 y}{dt^2} + 2\frac{dy}{dt} \right] - (8t+1)2t^{\frac{1}{2}} \frac{dy}{dt}$	M1		Subst. using (a)(i), (a)(ii) into given DE to eliminate all x
	$+ 12t^{\frac{3}{2}}y = 12t^{\frac{5}{2}}$ $4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} - 16t^{\frac{3}{2}}\frac{dy}{dt} + 12t^{\frac{3}{2}}y = 12t^{\frac{5}{2}}$			
	Divide by $4t^{\frac{1}{2}}$ gives $\frac{d^2 y}{dt^2} - 4\frac{dy}{dt} + 3y = 3t$	A1	2	CSQ A.G.
(c)	dt dt Solving $\frac{d^2 y}{dx^2} - 4\frac{dy}{dt} + 3y = 3t$ (*)			
	Auxl. Eqn. $m^2 - 4m + 3 = 0$ (m - 1)(m - 3) = 0 m = 1 and 3 CF $Ae^t + Be^{3t}$	M1 A1 M1		PI Condone x for t here; ft c's 2 real values
	For PI try $y = pt + q$	M1		OE
	$-4p+3pt+3q=3t \implies p=1, \ q=\frac{4}{3}$	A1		
	GS of (*) is $y = Ae^{t} + Be^{3t} + t + \frac{4}{3}$	B1F		CF + PI with 2 arb. constants and both CF and PI functions of <i>t</i> only
	GS of $x \frac{d^2 y}{dx^2} - (8x^2 + 1)\frac{dy}{dx} + 12x^3 y = 12x^5$			
	is $y = Ae^{x^2} + Be^{3x^2} + x^2 + \frac{4}{3}$	A1	7	
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) January 2011

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MFP3				
Q	Solution	Marks	Total	Comments
1	$k_1 = 0.1 \times (3 + \sqrt{4})$ (=0.5)	M1		
	$k_{\rm a} = 0.1 {\rm f} (3.1, 4.5)$	M1		
	$k_{2} = 0.1 \times (2.1 + \sqrt{45}) = 0.522122$	A1		PI accept 3dp or better
	$k_2 = 0.1 \times (5.1 \pm \sqrt{4.5}) = 0.522152$			1 1
	$y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$			
	$= 4 + 0.5 \times 1.022132$	m1		Dep on previous two Ms and
			_	numerical values for k's
	y(3.1) = 4.511	A1	5	Must be 4.511
2(a)	$\frac{10tal}{1000}$	M1	5	Differentiation and subst into DE
2(a)	p = 5a - 13; $5n = a - 0$	m1		Equating coeffs
	p + 5q - 15, $5p - q = 0$	1111		Equating coeffs.
	$p = \frac{1}{2}; \qquad q = \frac{3}{2}$	A1	3	OE Need both
(b)	Aux. eqn. $m + 5 = 0$	M1		PI. Or solving $y'(x)+5y=0$ as far as $y=$
	$(y_{CF} =)Ae^{-5x}$	A1		OE
	$(y_{GS} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$	B1F	3	c's CF + c's PI with exactly one arbitrary constant OE
	Total		6	
3 (a)	$r + r\cos\theta = 2$	M1		
	r + x = 2	B1		$r\cos\theta = x$ stated or used
	r = 2 - x $r^{2} + v^{2} - (2 - r)^{2}$	Al M1		$r^2 - r^2 + v^2$ used
	x + y = (2 - x) $y^2 = 4 - 4x$	A1	5	y = x + y used Must be in the form $y^2 = f(x)$ but accept
			U	ACF for $f(x)$.
(b)	Equation of line: $race A = {}^3 \rightarrow r = {}^3$			
	Equation of fine: $r\cos\theta = \frac{1}{4} \Rightarrow x = \frac{1}{4}$	M1		Use of $r\cos\theta = x$
		Al		4x=3 OE
	$y^{2} = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1; $ [Pts $\left(\frac{3}{4}, \pm 1\right)$]	M1		
	Distance between pts $(0.75, 1)$ and $(0.75, -1)$	A1	4	
	is 2			
	Altn:			
	At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE	(M1A1)		(M1 elimination of either r or θ) (For A condone slight prem approx.)
	Distance $PQ = 2r\sin\theta$	(M1)		Or use of cosine rule or Pythag.
	~ 5.4	~ /		
	$=2\times\frac{4}{4}\times\frac{5}{5}=2$	(A1)		Must be from exact values.
			6	
	Total		9	

MFP3(cont)				
Q	Solution	Marks	Total	Comments
4	IF is $e^{\int -\frac{2}{x} dx}$	M1		Award even if negative sign missing
	$= e^{-2\ln(x) (+c)} = e^{\ln(x)^{-2} (+c)}$	A1		OE Condone missing c
	$= (k)x^{-2}$	A1F		Ft earlier sign error
	$x^{-2}\frac{dy}{dx} - 2x^{-3}y = 2xe^{2x}$			
	$\frac{\mathrm{d}}{\mathrm{d}x}(x^{-2}y) = 2x \mathrm{e}^{2x}$	M1		LHS as $d/dx(y \times IF)$ PI
	$x^{-2}y = \int 2x \ \mathrm{e}^{2x} \ \mathrm{d}x$			
	$= \int x d(e^{2x}) = x e^{2x} - \int e^{2x} dx$	M1 A1		Integration by parts in correct dirn
	$x^{-2}y = xe^{2x} - \frac{1}{2}e^{2x} (+c)$	A1		ACF
	When $x = 2$, $y = e^{x}$ so $\frac{1}{4}e^{4} = 2e^{4} - \frac{1}{2}e^{4} + c$	m1		Boundary condition used to find c after integration.
	$c = -\frac{5}{4}e^4$			
	$y = x^3 e^{2x} - \frac{1}{2} x^2 e^{2x} - \frac{5}{4} x^2 e^4$	A1	9	Must be in the form $y = f(x)$
	Total		9	

PMT

Q	Solution	Marks	Total	Comments
$5(a) \frac{1}{a}$	$\frac{2x+8-12x-3}{(4x+1)(3x+2)} = \frac{5}{(4x+1)(3x+2)}$	B1	1	Accept $C = 5$
(b)	$\frac{10}{(4x+1)(3x+2)}dx = 2\int \left(\frac{4}{4x+1} - \frac{3}{3x+2}\right)dx$	M1		
=	$= 2 \left[\ln(4x+1) - \ln(3x+2) \right] (+c)$	A1		OE
Ι	$=\lim_{a\to\infty}\int_{1}^{a}\left(\frac{10}{(4x+1)(3x+2)}\right) dx$	M1		∞ replaced by <i>a</i> and $\lim_{a \to \infty}$ (OE)
=	$2 \lim_{a \to \infty} \left[\ln(4a+1) - \ln(3a+2) \right] - (\ln 5 - \ln 5)$			
=2	$2\lim_{a\to\infty} \left[\ln\left(\frac{4a+1}{3a+2}\right) \right] = 2\lim_{a\to\infty} \left[\ln\left(\frac{4+\frac{1}{a}}{3+\frac{2}{a}}\right) \right]$	m1,m1		Limiting process shown. Dependent on the previous M1M1
=	$= 2\ln\frac{4}{3} = \ln\frac{16}{9}$	A1	6	CSO
	Total		7	

MFP3(cont)				
Q	Solution	Marks	Total	Comments
6	Area = $\frac{1}{2} \int \left(2\sin 2\theta \sqrt{\cos \theta} \right)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\left(4\cos\theta\sin^{2}2\theta\right)\mathrm{d}\theta$	B1		$r^2 = 4\cos\theta\sin^2 2\theta$ or better
		B1		Correct limits
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\left(16\sin^{2}\theta\cos^{3}\theta\right)\mathrm{d}\theta$	M1		$\sin^2 2\theta = k \sin^2 \theta \cos^2 \theta (k>0)$
	$= \int_{0}^{\frac{\pi}{2}} \left(8\sin^2\theta \left(1 - \sin^2\theta \right) \right) \mathrm{d}\sin\theta$	m1		Substitution or another valid method to integrate $\sin^2 \theta \cos^3 \theta$
	$= \left[\frac{8\sin^3\theta}{3} - \frac{8\sin^5\theta}{5}\right]_0^{\frac{\pi}{2}}$	A1F		Correct integration of $p \sin^2 \theta \cos^3 \theta$
	$=\left(\frac{8}{3}-\frac{8}{5}\right)-0=\frac{16}{15}$	A1	7	CSO AG
	Alternatives for the last four marks			
	Area = $\int_{0}^{\frac{\pi}{2}} (\cos\theta - \cos 4\theta \cos\theta) d\theta$	(M1)		$2\cos\theta\sin^2 2\theta = \lambda\cos\theta + \mu\cos 4\theta\cos\theta$ $(\lambda, \mu \neq 0)$
	$\int \left(\cos 4\theta \cos \theta\right) \mathrm{d}\theta$	(m1)		Integration by parts twice or use of $\cos 4\theta \cos \theta = \frac{1}{2}(\cos 5\theta + \cos 3\theta)$
	$= -\frac{1}{15}(\cos 4\theta \sin \theta - 4\sin 4\theta \cos \theta)$	(A1F)		$\frac{2}{2}$ Correct integration of $p\cos 4\theta\cos \theta$
	Area = $(1-0) + \frac{1}{15}[(1-0) - (0)] = \frac{16}{15}$	(A1)		$\begin{bmatrix} \text{eg } p \left[\frac{1}{10} \sin 5\theta + \frac{1}{6} \sin 3\theta \right] \end{bmatrix}$ CSO AG $\{1 - \frac{1}{10} + \frac{1}{6} = \frac{16}{15}\}$
	Total		7	

	<u> </u>		c - · · ·		• • • • •		-		
Mark Scheme –	- General (Certificate c	t Education	(A-level)	Mathematics	– Further	Pure 3 –	Januarv	2011
	Conorar C		Langaron	(, , , , , , , , , , , , , , , , , , ,	mathomatioo	i artifor		oundary	2011

MFP3(cont)						
Q	Solution	Marks	Total	Comments		
7(a)(i)	$\cos x + \sin x = 1 + x - \frac{1}{2}x^2 - \frac{1}{6}x^3$	B1	1	Accept coeffs unsimplified, even 3! for 6.		
(ii)	$\ln(1+3x) = 3x - \frac{1}{2}(3x)^2 + \frac{1}{3}(3x)^3 = 3x - \frac{9}{2}x^2 + 9x^3$	B1	1	Accept coeffs unsimplified		
(b)(i)	$y = e^{\tan x}$, $\frac{dy}{dx} = \sec^2 x e^{\tan x}$	M1 A1		Chain rule ACF eg $ysec^2x$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\sec^2 x \tan x \mathrm{e}^{\tan x} + \sec^4 x \mathrm{e}^{\tan x}$	m1 A1		Product rule OE ACF		
	$= \sec^2 x e^{\tan x} (2\tan x + \sec^2 x)$ $= \frac{dy}{dx} (2\tan x + 1 + \tan^2 x)$					
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (1 + \tan x)^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	5	AG Completion; CSO any valid method.		
(ii)	$\frac{d^{3}y}{dx^{3}} = 2(1 + \tan x)\sec^{2} x \frac{dy}{dx} + (1 + \tan x)^{2} \frac{d^{2}y}{dx^{2}}$	M1				
	When $x = 0$, $\frac{d^3 y}{dx^3} = 2(1)(1)(1) + (1)(1) = 3$	A1	2	CSO		
(iii)	y(0) = 1; y'(0) = 1; y''(0) = 1; y''(0) = 3; $y(x) \approx y(0) + x y'(0) + \frac{1}{2}x^2 y''(0) + \frac{1}{3!}x^3 y'''(0)$	M1				
	$e^{\tan x} \approx 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3$	A1	2	CSO AG		
(c)	$\lim_{x \to 0} \left[\frac{e^{\tan x} - (\cos x + \sin x)}{x \ln(1 + 3x)} \right]$					
	$= \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{2} - 1 - x + \frac{x^2}{2} + \frac{x^3}{6}}{x \left(3x - \frac{9}{2}x^2 + \dots\right)}$	M1		Using series expns.		
	$= \lim_{x \to 0} \left[\frac{x^2 + \frac{2}{3}x^3 + \dots}{3x^2 - \frac{9}{2}x^3 \dots} \right] = \lim_{x \to 0} \left[\frac{1 + \frac{2}{3}x + \dots}{3 - \frac{9}{2}x \dots} \right]$	m1		Dividing numerator and denominator by x^2 to get constant terms. OE following a slip.		
	$=\frac{1}{3}$	A1	3			
	Total		14			

MFP3(cont)				T
Q	Solution	Marks	Total	Comments
8 (a)	dx dy dy	M1		Chain rule
	$\frac{dt}{dt} \frac{dt}{dx} - \frac{dt}{dt}$			
	$e^{t} \frac{dy}{dx} = \frac{dy}{dt} \Rightarrow x \frac{dy}{dx} = \frac{dy}{dt}$	A1	2	CSO AG
(b)	$\frac{\mathrm{d}}{\mathrm{d}t}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}; \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}x}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	M1		OE $\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \frac{dt}{dx}\frac{d^2y}{dt^2}$
	$\frac{\mathrm{d}x}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	m1		Product rule (dep on previous M)
	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = \frac{d^2 y}{dt^2}$	A1		OE
	$x^{2} \frac{d^{2} y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = 2\ln x \text{ becomes}$			
	$\frac{d^2 y}{dt^2} - x\frac{dy}{dx} - 3x\frac{dy}{dx} + 4y = 2\ln x$			
	$\Rightarrow \frac{d^2 y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$	m1		
	$\Rightarrow \frac{d^2 y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$	A1	5	CSO AG
(c)	Auxl eqn $m^2 - 4m + 4 = 0$	M1		PI
	$(m-2)^2 = 0, m = 2$	A1		PI
	CF: $(y_c =) (At + B)e^{2t}$	M1		Ft wrong value of <i>m</i> provided equal roots and 2 arb. constants in CF. Condone <i>x</i> for <i>t</i> here
	PI Try $(y_p =)$ $at + b$	M1		If extras, coeffs. must be shown to be 0.
	$-4a + 4at + 4b = 2t \Longrightarrow a = b = \frac{1}{2}$	A1		Correct PI. Condone <i>x</i> for <i>t</i> here
	GS $\{y\} = (At+B)e^{2t}+0.5(t+1)$	B1F	6	Ft on c's CF + PI, provided PI is non-zero and CF has two arbitrary constants and RHS is fn of t only
(d)	$\Rightarrow y = (A\ln x + B)x^2 + 0.5(\ln x + 1)$	M1		
	$y = 1.5$ when $x = 1 \implies B = 1$	A1F		Ft one earlier slip
	$y'(x) = (A \ln x + B) 2x + Ax + 0.5 x^{-1}$	m1		Product rule
	$y'(1) = 0.5 \Longrightarrow A = -2$	A1F		Ft one earlier slip
	$y = (1 - 2\ln x)x^2 + \frac{1}{2}(\ln x + 1)$	A1	5	ACF
	Total		18	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1	$k_1 = 0.2 \times [2 + \ln(1+1)]$	M1		PI. May be seen within given formula
	= 0.5386(29) (= *)			Accept 3sf rounded or truncated or better as evidence of the M1 line
	$k_2 = 0.2 \times f(2.2, 1 + *)$			
	$\dots = 0.2 \times [2.2 + \ln (1 + 1.5386)]$	M1		0.2×[2.2+ln(1+1+c's k_1)]. PI May be seen within given formula
	= 0.6263(248)	A1		4dp or better. PI by later work
	$y(2.2) = y(2) + \frac{1}{2} [k_1 + k_2]$ = 1 + 0.5×[0.5386 + 0.6263] = 1+ 0.5×1.16495	m1		Dep on previous two Ms but ft on c's numerical values (or numerical expressions) for <i>k</i> 's following evaluation of these.
	(= 1.582477) = 1.5825 to 4dp	A1	5	CAO Must be 1.5825 SC For those scoring M1M0 who have $k_2=0.5261(78)$, and final answer 1.5324 (ie 4 dp) for y(2.2) award a total of 2 marks [M1B1]
	Total		5	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
2(a)	PI: $y_{PI} = p + qxe^{-2x}$			
	$y'_{PI} = q e^{-2x} - 2qx e^{-2x}$	M1		Product rule used
	$y''_{PI} = -4qe^{-2x} + 4qxe^{-2x}$			
	$-4qe^{-2x} + 4qxe^{-2x} + qe^{-2x} - 2qxe^{-2x}$ $-2p - 2qxe^{-2x} = 4 - 9e^{-2x}$	M1		Subst. into DE
	-3q = -9 and $-2p = 4-3q = -9$ so $q = 3$; -2p = 4 so $p = -2$; [$y_{PI} = 3xe^{-2x} - 2$]	m1 A1 B1	5	Equating coefficients
(b)	Aux. eqn. $m^2 + m - 2 = 0$ (m-1)(m+2) = 0	M1		Factorising or using quadratic formula OE PI by correct two values of 'm' seen/used
	$v_{CE} = Ae^x + Be^{-2x}$	A1		
	$y_{GS} = Ae^{x} + Be^{-2x} + 3xe^{-2x} - 2$	B1F	3	$(y_{GS}) = c$'s CF + c's PI, provided 2 arbitrary constants
(c)	$x = 0, y = 4 \implies 4 = A + B - 2$	B1F		Only ft if exponentials in GS
	$\frac{dy}{dx} = Ae^x - 2Be^{-2x} + 3e^{-2x} - 6xe^{-2x}$			
	As $x \to \infty$, $(e^{-2x} \to 0 \text{ and}) xe^{-2x} \to 0$	E1		
	As $x \to \infty$, $\frac{dy}{dx} \to 0$ so $A = 0$	B1		
	When $A = 0$, $4 = 0 + B - 2 \implies B = 6$ $y = 6e^{-2x} + 3xe^{-2x} = 2$	B1	Δ	$y = 6e^{-2x} + 3xe^{-2x} + 2xe^{-2x}$
	$y - 0e^{-1} + 5xe^{-1} - 2$		т 12	$y - 0e^{-x} + 5xe^{-x} - 2$ OE
	lotal		12	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q	Solution	Marks	Total	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 (a)	$\int x^2 \ln x dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) dx$	M1		= $kx^3 \ln x \pm \int f(x)$, with $f(x)$ not
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 5 (x)	A 1		involving the "original" in x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		r ³ r ³	AI		
		$\dots = \frac{x}{3} \ln x - \frac{x}{9} (+c)$		3	Condone absence of '+ c '
(c) $\int_{0}^{c} x^{2} \ln x dx = \left[\lim_{a \to 0} \int_{a}^{c} x^{2} \ln x dx\right] = \left[\frac{e^{3}}{3} \ln c - \frac{e^{3}}{9}\right] - \lim_{a \to 0} \left[\frac{a^{3}}{3} \ln a - \frac{a^{3}}{9}\right] M I = \left[\operatorname{Him}_{a \to 0} F(c)\right] + \operatorname{Him}_{a \to 0} r^{3} \ln a = 0 + \operatorname{Him}_{a \to 0} F(c) + H$	(b)	Integrand is not defined at $x = 0$	E1	1	OE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(c)	$\int_{0}^{e} x^{2} \ln x \mathrm{d}x = \left\{ \lim_{a \to 0} \int_{a}^{e} x^{2} \ln x \mathrm{d}x \right\}$			OE
But $ \lim_{a \to 0} a^3 \ln a = 0 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2e^3}{9} \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2}{9} \\ A1 \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2}{9} \\ A1 \\ A1 \\ So \int_0^c x^2 \ln x dx = \frac{2}{9} \\ A1 \\ A$		$= \left(\frac{\mathrm{e}^3}{3}\ln\mathrm{e} - \frac{\mathrm{e}^3}{9}\right) - \lim_{a \to 0} \left[\frac{a^3}{3}\ln a - \frac{a^3}{9}\right]$	M1		$F(e) - \lim_{a \to 0} [F(a)]$
So $\int_{0}^{e} x^{2} \ln x dx = \frac{2e^{3}}{9}$ A13CSOTotal74 $\frac{dy}{dx} + (\cot x)y = \sin 2x$ IF is exp ($\int \cot x dx$) $= e^{\ln(\sin x)(+e)}$ M1 A1and with integration attempted $e^{e^{\ln(\sin x)(+e)}}$ $= (k) \sin x$ $= (k) \sin x$ $= (k) \sin x$ M1 A1DE Condone missing '+e' TF = sin x' scores M1A1A1 $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ $\frac{d}{dx}[y \sin x] = \sin 2x \sin x$ M1LHS as differential of $y \times IF$ PI $y \sin x = \int \sin 2x \sin x dx$ M1LHS as differential of $y \times IF$ PI $y \sin x = \int \sin 2x \sin x dx$ M1LHS as differential of $y \times IF$ PI $y \sin x = \int 2\sin^{2} x \cos x dx$ B1 $\sin 2x = 2\sin \cos x used$ $\Rightarrow y \sin x = \int 2\sin^{2} x d(\sin x)$ m1dep on both Ms Use of relevant substitution to stage $\int 2x^{2} dx$ or further or by inspection to $k \sin^{3} x$ $y \sin x = \frac{2}{3} \sin^{3} x (+c)$ A1ACF dep on both Ms Boundary condition used in attempt to find value of c after integration $c = \frac{1}{6}$ so $y \sin x = \frac{2}{3} \sin^{3} x + \frac{1}{6}$ A110		But $\lim_{a \to 0} a^3 \ln a = 0$	E1		Accept a general form eg
So $\int_{0}^{e} x^{2} \ln x dx = \frac{2e^{3}}{9}$ A13CSOTotal7Image: The set of the s					$x \to 0$ $x^{n} \ln x = 0$
Total74 $\frac{dy}{dx} + (\cot x)y = \sin 2x$ IF is $\exp(\int \cot x dx)$ $= e^{\ln(\sin x)(x_c)}$ $= (k) \sin x$ $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ M1and with integration attempted OE Condone missing '+c' 'IF = sin x' scores M1A1A1 $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ $\frac{d}{dx}[y \sin x] = \sin 2x \sin x$ M1LHS as differential of $y \times IF$ PI $y \sin x = \int \sin 2x \sin x dx$ A1FFt on c's IF provided no exp. or logs $\Rightarrow y \sin x = \int 2\sin^2 x \cos x dx$ B1 $\sin 2x = 2\sin x \cos x used$ $\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ m1dep on both Ms Use of relevant substitution to stage $\int 2s^2 ds$ or further or by inspection to $k \sin^3 x$ $y \sin x = \frac{2}{3} \sin^3 x (+c)$ A1A1 $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ m1 $c = \frac{1}{6}$ so $y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ A110CSO - no errors seen - accept equivalent forms		So $\int_{0}^{e} x^{2} \ln x dx = \frac{2e^{3}}{9}$	A1	3	CSO
4 $\frac{dy}{dx} + (\cot x)y = \sin 2x$ IF is $\exp(\int \cot x dx)$ $= e^{\ln(\sin x)(x_c)}$ (x_c) M1 A1 A1 A1 $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ $\frac{d}{dx}[y \sin x] = \sin 2x \sin x$ $\frac{d}{dx}[y \sin x] = \sin 2x \sin x$ $x \sin x$ $\frac{d}{dx}[y \sin x] = \sin 2x \sin x$ M1M1 LHS as differential of $y \times IF$ PI Ft on c's IF provided no exp. or logs $\sin 2x = \int 2\sin^2 x \cos x dx$ B1 $\Rightarrow y \sin x = \int 2\sin^2 x \cos x dx$ $\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ $y \sin x = \frac{2}{3} \sin^3 x (+c)$ A1 $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ TotalM1 A1 A1 A1A1F A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		Total		7	
dx IF is exp ($\int \cot x dx$)M1 A1 A1 A1 and with integration attempted $= e^{\ln(\sin x)(x+c)}$ A1 $= (k) \sin x$ A1 A1 A1 $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ OE Condone missing '+c' 'IF = sin x' scores M1A1A1 $\sin x \frac{dy}{dx} + (\cos x)y = \sin 2x \sin x$ M1LHS as differential of $y \times IF$ PI $y \sin x = \int \sin 2x \sin x dx$ A1FFt on c's IF provided no exp. or logs $\Rightarrow y \sin x = \int 2\sin^2 x \cos x dx$ B1 $\sin 2x = 2\sin x \cos x$ used $\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ m1dep on both Ms Use of relevant substitution to stage $\int 2s^2 ds$ or further or by inspection to $k \sin^3 x$ $y \sin x = \frac{2}{3} \sin^3 x (+c)$ A1ACF dep on both Ms Boundary condition used in attempt to find value of c after integration $CSO - no errors seen - accept equivalentformsc = \frac{1}{6} so y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}A110Total10Total10$	4	$\frac{dy}{dt} + (\cot x)y = \sin 2x$			
$= e^{\ln(\sin t)(+c)}$ $= e^{\ln(\sin t)(+c)}$ $= (k) \sin x$ $= $		dx IF is exp ($\int \cot r dr$)	M1		and with integration attempted
$= \frac{1}{4} + $		$= 2 \ln(\sin x) (+c)$	Δ 1		OF Condone missing ' $+c$ '
		= c = (k) sin x	A1 A1		$IF = \sin x$ scores M1A1A1
$\frac{d}{dx}[y\sin x] = \sin 2x \sin x$ M1LHS as differential of $y \times IF$ PI $y\sin x = \int \sin 2x \sin x dx$ A1FFt on c's IF provided no exp. or logs $\Rightarrow y\sin x = \int 2\sin^2 x \cos x dx$ B1 $\sin 2x = 2\sin x \cos x$ used $\Rightarrow y\sin x = \int 2\sin^2 x d(\sin x)$ m1dep on both Ms $y\sin x = \frac{2}{3}\sin^3 x (+c)$ A1A1 $\frac{1}{2}\sin \frac{\pi}{6} = \frac{2}{3}\sin^3 \frac{\pi}{6} + c$ m1 $c = \frac{1}{6}$ so $y\sin x = \frac{2}{3}\sin^3 x + \frac{1}{6}$ A1Image: term of te		$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + (\cos x)y = \sin 2x \sin x$			
$y \sin x = \int \sin 2x \sin x dx$ A1FFt on c's IF provided no exp. or logs $\Rightarrow y \sin x = \int 2\sin^2 x \cos x dx$ B1 $\sin 2x = 2\sin x \cos x$ used $\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ m1dep on both Ms Use of relevant substitution to stage $\int 2s^2 ds$ or further or by inspection to $k \sin^3 x$ $y \sin x = \frac{2}{3} \sin^3 x (+c)$ A1A1 $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ m1 $c = \frac{1}{6}$ so $y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ A1Total10		$\frac{\mathrm{d}}{\mathrm{d}x}[y\sin x] = \sin 2x \sin x$	M1		LHS as differential of $y \times IF$ PI
$\Rightarrow y \sin x = \int 2\sin^2 x \cos x dx$ $\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ $y \sin x = \int 2\sin^2 x d(\sin x)$ $y \sin x = \frac{2}{3}\sin^3 x (+c)$ $\frac{1}{2}\sin \frac{\pi}{6} = \frac{2}{3}\sin^3 \frac{\pi}{6} + c$ $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3}\sin^3 x + \frac{1}{6}$ $\boxed{\text{Total}}$ $\boxed{\text{B1}}$ $\sin 2x = 2\sin x \cos x \text{used}$ $\frac{\sin 2x}{2} = 2\sin x \sin x \text{used}$ $\frac{\sin 2x}{2} = 2\sin x \cos x \text{used}$ $\frac{\sin 2x}{2} = 2\sin x \sin x \text{used}$ $\frac{\sin 2x}{2} = 2\sin x \text{used}$ $$		$y\sin x = \int \sin 2x \sin x \mathrm{d}x$	A1F		Ft on c's IF provided no exp. or logs
$\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$ m1 dep on both Ms Use of relevant substitution to stage $\int 2s^2 ds$ or further or by inspection to $k\sin^3 x$ $y \sin x = \frac{2}{3}\sin^3 x \ (+c)$ A1 A2 A1 ACF dep on both Ms Boundary condition used in attempt to find value of c after integration $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3}\sin^3 x + \frac{1}{6}$ A1 A1 A1 BOUNDARY CSO - no errors seen - accept equivalent forms D D D D D D D D D D D D D D D D D D D		$\Rightarrow y \sin x = \int 2\sin^2 x \cos x \mathrm{d}x$	B1		$\sin 2x = 2\sin x \cos x$ used
$y \sin x = \frac{2}{3} \sin^3 x \ (+c)$ $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ $Total$ $A1$ $A1$ ACF $dep \text{ on both Ms}$ $Boundary \text{ condition used in attempt to}$ $find \text{ value of } c \text{ after integration}$ $CSO - \text{ no errors seen - accept equivalent}$ $forms$		$\Rightarrow y \sin x = \int 2\sin^2 x d(\sin x)$	m1		dep on both Ms Use of relevant substitution to stage $\int 2s^2 ds$
$y \sin x = \frac{2}{3} \sin^3 x \ (+c)$ $\frac{1}{2} \sin \frac{\pi}{6} = \frac{2}{3} \sin^3 \frac{\pi}{6} + c$ $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ 10 $\frac{1}{6} \cos y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ 10 $\frac{1}{6} \cos y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ 10 10 10					or further or by inspection to $k \sin^3 x$
$\frac{1}{2}\sin\frac{\pi}{6} = \frac{2}{3}\sin^3\frac{\pi}{6} + c$ $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3}\sin^3 x + \frac{1}{6}$ $\frac{1}{2}\sin\frac{\pi}{6} = \frac{2}{3}\sin^3\frac{\pi}{6} + c$ $regionalize A1$		$v \sin r = \frac{2}{-\sin^3} r (\pm c)$			
$\frac{1}{2}\sin\frac{\pi}{6} = \frac{2}{3}\sin^3\frac{\pi}{6} + c$ $c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3}\sin^3 x + \frac{1}{6}$ $\frac{1}{6} \text{ m1}$ $regimed and a m1$ $regimed and a m2$ $regimed and a m3$ $regimed and a$		$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	A1		ACF
$c = \frac{1}{6} \text{ so } y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$ A1 10 CSO - no errors seen - accept equivalent forms Total 10 I		$\frac{1}{2}\sin\frac{\pi}{6} = \frac{2}{3}\sin^3\frac{\pi}{6} + c$	m1		dep on both Ms Boundary condition used in attempt to find value of <i>c</i> after integration
Total 10		$c = \frac{1}{6}$ so $y \sin x = \frac{2}{3} \sin^3 x + \frac{1}{6}$	A1	10	CSO – no errors seen – accept equivalent forms
		Total		10	

Q	Solution	Marks	Total	Comments
5 (a)	dy $2\sec^2 x$	M1		Chain rule
	$\frac{1}{dx} = \frac{1}{1+2\tan x}$	A1		ACF for $y'(x)$
	$\frac{d^2 y}{dx^2} = \frac{(1+2\tan x)(4\sec^2 x\tan x) - 2\sec^2 x(2\sec^2 x)}{(1+2\tan x)^2}$	M1 A1	4	Quotient rule OE in which both u and v are not const. or applied to a correct form of y' ACF for $y''(x)$
(b)	McC. Thm: $y(0) + x y'(0) + \frac{x^2}{2} y''(0)$			
	(y(0) = 0); y'(0) = 2; y''(0) = -4	M1		Attempt to evaluate at least $y'(0)$ and $y''(0)$. PI
	$\ln\left(1+2\tan x\right) \approx 2x - 2x^2$	A1	2	Dep on previous 5 marks
(c)	$\ln(1-x) = -x - \frac{1}{2}x^2 \dots$	B1		Ignore higher power terms
	$\left[\frac{\ln(1+2\tan x)}{\ln(1-x)}\right] \approx \frac{2x - 2x^2 \dots}{-x - \frac{1}{2}x^2 \dots}$	M1		Expansions used
	$=\frac{2-2x}{-1-\frac{1}{2}x}$	ml		Dividing num. and den. by x to get constant term in each and non-const term in at least num. or den.
	So $\lim_{x \to 0} \left[\frac{\ln(1 + 2\tan x)}{\ln(1 - x)} \right] = \frac{2}{-1} = -2$	A1F	4	ft c's answer to (b) provided answer (b) is in the form $\pm px \pm qx^2$ and B1 awarded
	Tota	1	10	
L	104	·•	10	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$u = \frac{\mathrm{d}y}{\mathrm{d}x} - 2x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2$	M1 A1		Differentiating subst wrt x , \geq two terms correct
	DE becomes $(x^{3}+1)(\frac{du}{dx}+2) - 3x^{2}(u+2x) = 2 - 4x^{3}$ $(x^{3}+1)\frac{du}{dx} + 2x^{3} + 2 - 3x^{2}u - 6x^{3} = 2 - 4x^{3}$	M1		Substitute into LHS of DE as far as no ys
	dx DE becomes $(x^3 + 1)\frac{du}{dx} = 3x^2u$	A1	4	CSO AG
(b)	$\int \frac{1}{u} du = \int \frac{3x^2}{x^3 + 1} dx$	M1		Separate variables OE PI
	$\ln u = \ln \left(x^3 + 1 \right) + \ln A$	A1;A1		$\ln u; \ln(x^3 + 1)$
		A1F		two log terms or better
	$u = A(x^3 + 1)$	A1		OE RHS
	$\frac{\mathrm{d}y}{\mathrm{d}x} = A\left(x^3 + 1\right) + 2x$	m1		$u = f(x)$ to $\frac{dy}{dx} = \pm f(x) \pm 2x$
	$y = A\left(\frac{x^4}{4} + x\right) + x^2 + B$	m1		Solution with two arbitrary constants and both previous M and m scored
		A1	8	OE RHS
	Total		12	

Q	Solution	Marks	Total	Comments
7 (a)	$r = 2\sin\theta \Rightarrow r^2 = 2r\sin\theta$	M1		
	$x^2 + y^2 = 2y$	A2,1	3	OE (A1) either for $r^2 = x^2 + y^2$ or for $r\sin\theta = y$
				SC If M0 give B1 for $r^2 = x^2 + y^2$ or for $r\sin\theta = y$ used
(b)(i)	$2\sin\theta = \tan\theta$	M1		Equating <i>r</i> s
	$2\sin\theta\cos\theta = \sin\theta$			
	$\sin\theta(2\cos\theta-1)=0$	m1		Both solutions have to be considered if
	1 -			not in factorised form
	$\sin\theta = 0 \Rightarrow \theta = 0; \cos\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{2}$			Alternative: $\sin 2\theta = \sin \theta \Rightarrow \theta = 0, \frac{\pi}{3}$
	$\theta = 0 \Longrightarrow r = 0$ is pole $Q(0,0)$	B1		Indep. Can just verify using both cans +statement.
	$\pi \qquad = \left(\left(-\pi \right) \right)$	21		
	$\theta = \frac{\pi}{3} \Rightarrow r = \sqrt{3} \left(P\left(\sqrt{3}, \frac{\pi}{3}\right) \right)$	A1	4	CSO
(ii)	At $A = \frac{\pi}{r}$ $r = 2\sin\frac{\pi}{r} = \sqrt{2}$			
	$4, 7 = 25 \text{ m}^{-1} = \sqrt{2}$	M1		Substitute $\theta = \frac{\pi}{2}$ into the equations of
	At $B \theta = \frac{\pi}{r}$ $r = \tan \frac{\pi}{r} = 1$			4
	4, 4, 4			both curves.
	Since $\sqrt{2} > 1$, A is further away (from the	E1	2	CSO
(***)	pole than <i>B</i> .)			
(m)	\sim			
	O_{1} C_{1} C_{1}			
	Area bounded by line <i>OP</i> and curve C_1			
	$1 \int_{-\pi}^{\pi} 4 + 2 = 10$			
	$=\frac{1}{2}\int_{0}^{3}4\sin^{2}\theta \mathrm{d}\theta$	M1		Use of $-\frac{1}{2}r^2 d\theta$; ignore limits here
	_			
	$= \int (1 - \cos 2\theta) \mathrm{d}\theta$	m1		Attempt to write $\sin^2 \theta$ in terms of $\cos 2\theta$ only
	$=\left \theta - \frac{1}{2}\sin 2\theta \right $	A1		Ignore limits here
	$(\pi 1 \sqrt{3})$ $\pi \sqrt{3}$			
	$=\left \frac{\pi}{3}-\frac{1}{2}\times\frac{\sqrt{3}}{2}\right -0=\frac{\pi}{3}-\frac{\sqrt{3}}{4}$	A1		PI
	(3 2 2) $3 4$			
	Area bounded by line OP and curve C_2			
	$=\frac{1}{2}\int_{-\infty}^{\frac{\pi}{3}}\tan^2\theta\mathrm{d}\theta$	M1		Use of $\frac{1}{r^2} d\theta$; ignore limits here
	2,50	1011		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
	$-\frac{1}{1}\int (\sec^2\theta - 1) d\theta$	m1		Using $\tan^2 \theta = \pm \cos^2 \theta + 1$ DI
	$-\frac{1}{2}\int (\sec \theta - 1) d\theta$	1111		Using $\tan \theta - \pm \sec \theta \pm 1$ F1
	$=\frac{1}{2}[\tan\theta-\theta]$	A1		Ignore limits here
	$=\frac{1}{\sqrt{3}}(\sqrt{3}-\frac{\pi}{2})-0=\frac{\sqrt{3}}{\sqrt{3}}-\frac{\pi}{2}$	A1		Ы
	2(3) 2 6			
	Paguirad area = $\begin{pmatrix} \pi & \sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & \pi \end{pmatrix}$			Can award earlier eg if we see
	$\left[\frac{\text{Required area}}{2} = \left(\frac{3}{3} - \frac{4}{4} \right)^{-} \left(\frac{2}{2} - \frac{6}{6} \right) \right]$			$\frac{1}{2}\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 4\sin^2\theta d\theta - \frac{1}{2}\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \tan^2\theta d\theta$
				2^{J_0} 2^{J_0} 2^{J_0} 2^{J_0} 2^{J_0}
	$=\frac{1}{2}\pi - \frac{3}{\sqrt{3}}$ $\left(a = \frac{1}{2} \qquad b = -\frac{3}{2}\right)$	Δ1	10	CSO
			10	
	Total		19	
	TOTAL		75	

General Certificate of Education (A-level) January 2012

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1 (a)	$y(1.1) = y(1) + 0.1 \left[\frac{2-1}{4+1} \right]$	M1A1		
	= 2 + 0.02 = 2.02	A1	3	
(b)	$y(1.2) = y(1) + 2(0.1) \{ f[1.1, y(1.1)] \}$	M1		
	$= 2 + 2(0.1) \left[\frac{2.02 - 1.1}{2.02^2 + 1.1} \right]$	A1F		ft on c's answer to (a)
	= 2.035518 = 2.036 to 3dp	A1	3	CAO Must be 2.036
	Total		6	
2	$\sqrt{4+x} = 2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} = 2\left[1+\frac{1}{2}\left(\frac{x}{4}\right)+O(x^2)\right]$	M1		Attempt to use binomial theorem OE The notation $O(x^n)$ can be replaced by a term of the form kx^n
	$\left[\frac{\sqrt{4+x}-2}{x+x^2}\right] = \left[\frac{\frac{x}{4}+O(x^2)}{x+x^2}\right] = \left[\frac{\frac{1}{4}+O(x)}{1+x}\right]$	ml		Division by x stage before taking the limit
	$\lim_{x \to 0} \left[\frac{\sqrt{4+x} - 2}{x+x^2} \right] = \frac{1}{4}$	A1	3	CSO NMS 0/3
	Total		3	
3	$m^2 + 2m + 10 = 0$ $m = -1 \pm 3i$	M1 A1		PI
	Complementary function is (y =) $e^{-x} (A \cos 3x + B \sin 3x)$	A1F		OE Ft on incorrect complex value of <i>m</i>
	Particular integral: try $y = ke^{x}$ $k + 2k + 10k = 26 \implies k = 2$	M1 A1		
	(GS y =) $e^{-x}(A\cos 3x + B\sin 3x) + 2e^{x}$	B1F		c's CF+ c's non-zero PI but must have 2 arb consts
	$x = 0, y = 5 \implies 5 = A + 2$ so $A = 3$	B1F		ft c's k ie $A = 5 - k, k \neq 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{-x}(-3A\sin 3x + 3B\cos 3x - A\cos 3x - B\sin 3x) + 2e^{x}$	M1		Attempt to differentiate c's GS (ie CF + PI)
	11 = 3B - A + 2 (B = 4)	A1		
	$y = e^{-x}(3\cos 3x + 4\sin 3x) + 2e^{x}$	A1	10	CSO
	Total		10	

Q	Solution	Marks	Total	Comments
4 (a)	IF is exp $\left(\int \frac{2}{x} dx\right)$	M1		and with integration attempted
	$= e^{2\ln x}$ $= x^2$	A1 A1		PI
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[yx^2 \right] = x^2 \ln x$	M1		LHS; PI
	$\Rightarrow yx^2 = \int (\ln x) \frac{d}{dx} \left(\frac{x^3}{3} \right)$	M1		Attempt integration by parts in correct direction to integrate $x^p \ln x$
	$=\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$	A1		RHS
	$yx^2 = \frac{x^3}{3}\ln x - \frac{x^3}{9} + A$			
	$\{ y = \frac{x}{3} \ln x - \frac{x}{9} + Ax^{-2} \}$	A1	7	
(b)	Now, as $x \to 0$, $x^k \ln x \to 0$	E1		Must be stated explicitly for a value of $k > 0$
	As $x \to 0$, $y \to 0 \Longrightarrow A = 0$	B1		Const of int = 0 must be convincing
	$yx^2 = \frac{x^3}{3}\ln x - \frac{x^3}{9}$			
	When $x = 1$, $y = -\frac{1}{9}$	B1F	3	ft on one slip but must have made a realistic attempt to find <i>A</i>
	Total		10	

Q	Solution	Marks	Total	Comments
5(a)	The interval of integration is infinite	E1	1	OE
(b)	$u = x^2 e^{-4x} + 3 \Rightarrow du = (2xe^{-4x} - 4x^2e^{-4x}) dx$	M1		du/dx or 'better'
	$\int \frac{x(1-2x)}{x^2+3e^{4x}} dx = \int \frac{1}{2} \times \frac{2x(1-2x)e^{-4x}}{x^2e^{-4x}+3} dx$ $= \frac{1}{2} \times \int \frac{1}{2} dy$	A 1		
	$\frac{1}{2} \times \int \frac{1}{u} du$	AI		
	$= \frac{1}{2} \ln u + c = \frac{1}{2} \ln \left(x^2 e^{-4x} + 3 \right) \{+c\}$	A1	3	OE Condone missing <i>c</i> . Accept later substitution back if explicit
(c)	$I = \int_{\frac{1}{2}}^{\infty} \frac{x(1-2x)}{x^2 + 3e^{4x}} dx$			
	$= \lim_{a \to \infty} \int_{\frac{1}{2}}^{a} \frac{x(1-2x)}{x^2 + 3e^{4x}} dx$	M1		
	$= \lim_{a \to \infty} \frac{1}{2} \left\{ \ln \left(a^2 e^{-4a} + 3 \right) - \ln \left(\frac{e^{-2}}{4} + 3 \right) \right\}$	M1		Uses part (b) and $F(a) - F(1/2)$
	$=\frac{1}{2}\ln\{\lim_{a\to\infty}\left(a^2e^{-4a}+3\right)\}-\frac{1}{2}\ln(\frac{e^{-2}}{4}+3)$			
	Now $\lim_{a\to\infty} \left(a^2 e^{-4a}\right) = 0$	E1		Stated explicitly (could be in general form)
	$I = \frac{1}{2}\ln 3 - \frac{1}{2}\ln(\frac{e^{-2}}{4} + 3)$	A1	4	CSO ACF
	Total		8	

Q	Solution	Marks	Total	Comments
6(a)	$y = \ln \cos 2x \Rightarrow y'(x) = \frac{1}{\cos 2x} (-2\sin 2x)$	M1 A1		Chain rule
	$y^{\prime\prime}(x) = -4\sec^2 2x$	ml		$\lambda \sec^2 2x$ OE
	$y'''(x) = -8\sec 2x (2\sec 2x \tan 2x)$	M1		$K \sec^2 2x \tan 2x$ OE
	$\{y'''(x) = -16\tan 2x (\sec^2 2x)\}$			
	$y''''(x) = -16[2\sec^2 2x(\sec^2 2x) + \tan 2x(2\sec 2x (2\sec 2x \tan 2x))]$	M1 A1	6	Product rule OE ACF
(b)	y(0) = 0, y'(0) = 0, y''(0) = -4, y'''(0) = 0, y''''(0) = -32	B1F		ft c's derivatives
	$\ln\cos 2x \approx 0 + 0 + \frac{x^2}{2}(-4) + 0 + \frac{x^4}{4!}(-32)$	M1		
	$pprox - 2x^2 - rac{4}{3}x^4$	A1	3	CSO throughout parts (a) and (b) AG
(c)	$\ln(\sec^2 2x) = -2\ln(\cos 2x)$	M1		PI
	$\approx 4x^2 + \frac{8}{3}x^4$	A1	2	
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	u = xy			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = y + x \frac{\mathrm{d}y}{\mathrm{d}x}$	M1		Product rule OE
	$\frac{dx}{dx} = \frac{y + x}{dx} \frac{dx}{dx}$	A1		OE
	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = \frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)$	A1		OE
	$x\frac{d^{2}y}{dx^{2}} + 2(3x+1)\frac{dy}{dx} + 3y(3x+2) = 18x$ $(x\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx}) + 6(x\frac{dy}{dx} + y) + 9xy = 18x$			
	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + 6\frac{\mathrm{d}u}{\mathrm{d}x} + 9u = 18x$	A1	4	CSO AG Be convinced
(b)	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + 6\frac{\mathrm{d}u}{\mathrm{d}x} + 9u = 18x$			
	CF: Aux eqn $m^2 + 6m + 9 = 0$	M1		PI
	$(m+3)^2 = 0$ so $m = -3$	A1		PI
	CF: $(u =) e^{-3x} (Ax + B)$	A1F		
	PI: Try $(u =) px + q$ 0 + 6p + 9(px + q) = 18x	M1		PI. Must be more than just stated
	9p = 18, 6p + 9q = 0	ml		
	$p=2; q=-\frac{12}{2}$	A1		Both
	$u = e^{-3x}(Ax + B) + 2x - \frac{4}{3}$	B1F		c's CF + c's PI but must have 2 constants, also must be in the form $u = f(x)$
	$xy = e^{-3x}(Ax + B) + 2x - \frac{4}{3}$			
	$y = \frac{1}{x} \{ e^{-3x} (Ax + B) + 2x - \frac{4}{3} \}$	A1	8	
	Total		12	

Q	Solution	Marks	Total	Comments
8 (a)	Area = $\frac{1}{2}\int (3+2\cos\theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$ or $\int_0^{\pi} r^2 d\theta$
	$=\frac{1}{2}\int_{0}^{2\pi}(9+12\cos\theta+4\cos^{2}\theta)\mathrm{d}\theta$	B1 B1		Correct expn of $[3 + 2\cos\theta]^2$ Correct limits
	$= \int_{0}^{2\pi} (4.5 + 6\cos\theta + (1 + \cos 2\theta)) d\theta$	M1		Attempt to write $\cos^2 \theta$ in terms of $\cos 2\theta$
	$= \left[4.5\theta + 6\sin\theta + \theta + \frac{1}{2}\sin 2\theta\right]_{0}^{2\pi}$	A1F		Correct integration ft wrong coefficients
	$= 11\pi$	A1	6	CSO
(b)(i)	$x^2 + y^2 - 8x + 16 = 16$	M1		Use of any two of $x = r \cos \theta$, $y = r \sin \theta$, $x^2 + y^2 = r^2$
	$r^2 - 8r\cos\theta + 16 = 16 \implies r = 8\cos\theta$	A1		
	At intersection, $8\cos\theta = 3 + 2\cos\theta$ $\Rightarrow \cos\theta = \frac{3}{6}$	M1		Equating rs or equating $\cos\theta$ s with a further step to solve eqn. (OE eg $4r = 12 + r \implies 4r - r = 12$)
	Points $\left(4,\frac{\pi}{3}\right)$ and $\left(4,\frac{5\pi}{3}\right)$	A1		OE
	$AB = 2 \times \left(4\sin\frac{\pi}{3}\right)$	M1		Valid method to find <i>AB</i> , ft c's <i>r</i> and θ values
	$=4\sqrt{3}$	A1	6	OE surd
(ii)	Let <i>M</i> =centre of circle then $\angle AMB = \frac{2\pi}{3}$	B1		Accept equiv eg $\angle AMO = \frac{\pi}{3}$
	Length of arc <i>AOB</i> of circle = $4 \times \frac{2\pi}{3}$	M1		Use of arc = $4 \times (\angle AMB$ in rads)
	Perimeter of segment $AOB = \frac{8\pi}{3} + 4\sqrt{3}$	A1	3	
	Total		15	
	Alternative to (b)(i): Writing $r = 3 + 2\cos\theta$ in cartesian form (N	J [1 Δ 1)		
	Finding cartesian coordinates of points A and	dR = (2)	$+2\sqrt{2}$	(M1A1)
	Finding length AB (M1A1)	<i>a D</i> 10 (2	, <u> </u> , -)	(******)
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
J or ft or F	follow through from previous incorrect result
CAO	correct answer only CSO
	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.
MFP3 : June 2012

Q	Solution	Marks	Total	Comments
1	$k_1 = 0.25 \times \left(\sqrt{2 \times 2} + \sqrt{9}\right) (=1.25)$	M1		PI. May see within given formula Either $k_2 = 0.25$ f (2.25, 10.25) stated/used
	$k_2 = 0.25 \pm (2.25, 9 \pm 1.25)$ $k_2 = 0.25 \times (\sqrt{2 \times 2.25} \pm \sqrt{9 \pm 1.25})$	M1		or $k_2 = 0.25 \times \left(\sqrt{2 \times 2.25} + \sqrt{9 + c's k_1}\right)$ PI May see within given formula
	$k_2 = 1.33(072)$	A1		$k_2 = 1.33(072) 2$ dp or better PI by later work
	$y (2.25) = y (2) + \frac{1}{2} [k_1 + k_2]$ = 9 + 0.5 [1.25 + 1.33 (072)]	m1		Dep on previous two Ms and $y(2) = 9$ and
	$= 9 + 0.5 \times 2.58 (072)$ y (2.25) = 10.29036 = 10.29 (to 2 dp)	A1	5	numerical values for <i>k</i> 's CAO Must be 10.29
	Total		5	
2(a)	$\sin 2x = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} \dots$ $= 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5$	B1	1	Accept ACF even if unsimplified
(b)	$\lim_{x \to 0} \left[\frac{2x - \sin 2x}{x^2 \ln(1 + kx)} \right]$ = $\lim_{x \to 0} \frac{2x - (2x - \frac{4}{3}x^3 + \frac{4}{15}x^5)}{x^2 \left(kx - \frac{(kx)^2}{2} + \right)}$ = $\lim_{x \to 0} \left[\frac{\frac{4}{3}x^3 - \frac{4}{15}x^5 +}{kx^3 - \frac{k^2}{2}x^4} \right]$	M1 B1		Using series expansions. Expansion of $\ln (1 + kx) = kx ()$
	$=\lim_{x \to 0} \left[\frac{\frac{4}{3} - O(x^2)}{k - O(x)} \right]$ $\frac{4}{-16} = 16 \Rightarrow k = \frac{1}{-12}$	m1 A1	4	Dividing numerator and 0 denominator by x^3 to get constant term in each. Must be at least a total of 3 terms divided by x^3 OE exact value. Dep on numerator being of form $4/3(OE) + \lambda x^2 \dots (\lambda \neq 0)$ and
	3k 12 Total		5	denominator being of form $k + \mu x (\mu \neq 0)$ before limit taken
	Iotai		3	

Q	Solution	Marks	Total	Comments	
3	Area = $\frac{1}{2}\int \left(2\sqrt{1+\tan\theta}\right)^2 (d\theta)$	M1		Use of $\frac{1}{2}\int r^2 (d\theta)$	
	$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{0} 4(1 + \tan\theta) d\theta$	B1		Correct limits. If any contradiction use the limits at the substitution stage	
	$= 2\left[\theta + \ln \sec\theta\right] \frac{\theta}{4}$	B1		$\int k (1 + \tan \theta) (d\theta) = k (\theta + \ln \sec \theta)$ ACF ft on c's k	
	$= 2\left\{0 - \left[-\frac{\pi}{4} + \ln \sec\left(-\frac{\pi}{4}\right)\right]\right\}$				
	$= 2\left(\frac{\pi}{4} - \ln\sqrt{2}\right) = \frac{\pi}{2} - 2\ln\sqrt{2} = \frac{\pi}{2} - \ln 2$	A1	4	CSO AG	
	Total		4		
4 (a)	IF is $e^{\int \frac{4}{2x+1} dx}$	M1		PI	
	$e^{2\ln(2x+1)(+c)} = e^{\ln(2x+1)^2(+c)}$	A1		Either O.E. Condone missing '+ c '	
	$= (A)(2x+1)^2$	A1F		Ft on earlier $e^{\lambda \ln(2x+1)}$, condone missing 'A'	
	$(2x+1)^2 \frac{dy}{dx} + 4(2x+1)y = 4(2x+1)^7$				
	$\frac{d}{dx}[(2x+1)^2 y] = 4 (2x+1)^7$	M1		LHS as $d/dx (y \times c$'s IF) PI and also RHS of form $p (2x + 1)^q$	
	$(2x+1)^2 y = \int 4(2x+1)^7 dx$	A1			
	$(2x+1)^2 y = \frac{1}{4}(2x+1)^8 \ (+c)$	B1F		Correct integration of $p (2x + 1)^q$ to $\frac{p(2x+1)^{q+1}}{2(q+1)} (+c) \text{ ft for } q \ge 2 \text{ only}$	
	(GS): $y = \frac{1}{4}(2x+1)^6 + c(2x+1)^{-2}$	A1	7	Must be in the form $y = f(x)$, where $f(x)$ is ACF	
(b)	$y = \frac{1}{4}(2x+1)^6 + c(2x+1)^{-2}$				
	When $x = 0$, $\frac{dy}{dx} = 0$	M1		Using boundary condition $x = 0$, $\frac{dy}{dx} = 0$ and c's GS in (a) towards obtaining a value for <i>c</i>	
	$\Rightarrow y = 1 \left[\frac{\mathrm{d}y}{\mathrm{d}x} = 3(2x+1)^5 - 4c(2x+1)^{-3} \right]$	B1		Either $y = 1$ or correct expression for dy/dx in terms of x only	
	$\Rightarrow c = \frac{3}{4}$ so $y = \frac{1}{4}(2x+1)^6 + \frac{3}{4}(2x+1)^{-2}$	A1	3	CSO	
	Total		10		

Q	Solution	Marks	Total	Comments		
5(a)	$\int x^2 e^{-x} dx = -x^2 e^{-x} - \int -2x e^{-x} dx$	M1 A1		$kx^2e^{-x} - \int 2kx e^{-x} (dx)$ for $k = \pm 1$		
	$= -x^2 e^{-x} + 2\{-x e^{-x} - \int -e^{-x} dx\}$	m1		$\int x e^{-x} dx = \lambda x e^{-x} - \int \lambda e^{-x} (dx)$ for $\lambda = \pm 1$ in 2nd application of integration by parts		
	$= -x^2 e^{-x} - 2x e^{-x} - 2e^{-x} (+c)$	A1	4	Condone absence of $+ c$		
(b)	$I = \int_{0}^{\infty} x^{2} e^{-x} dx = \lim_{a \to \infty} \int_{0}^{a} x^{2} e^{-x} dx$ $\lim_{a \to \infty} \{-a^{2} e^{-a} - 2a e^{-a} - 2e^{-a}\} - [-2]$	M1		F(a) – F(0) with an indication of limit 'a $\rightarrow \infty$ ' and F(x) containing at least one $x^n e^{-x}, n > 0$ term		
	$\lim_{a \to \infty} a^k e^{-a} = 0 , (k \ge 0)$	E1		For general statement or specific statement for either $k = 1$ or $k = 2$		
	$\int_{0}^{\infty} x^2 \mathrm{e}^{-x} \mathrm{d}x = 2$	A1	2	CSO		
	Total					
6(a)	$y = \ln(1 + \sin x), \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + \sin x} \times (\cos x)$	M1 A1	2	Chain rule OE ACF eg $e^{-y} \cos x$		
(b)	$\left(\frac{d^2 y}{dx^2}\right) = \frac{(1+\sin x)(-\sin x) - \cos x(\cos x)}{(1+\sin x)^2}$	M1		Quotient rule OE, with u and v non constant		
	$\frac{d^2 y}{dx^2} = \frac{-\sin x - 1}{(1 + \sin x)^2} = \frac{-1}{1 + \sin x} = \frac{-1}{e^y} = -e^{-y}$	Al	3	CSO AG Completion must be convincing		
(c)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = \mathrm{e}^{-y} \frac{\mathrm{d}y}{\mathrm{d}x}$	B1		ACF for $\frac{d^3 y}{dx^3}$		
	$\frac{d^4 y}{dx^4} = -e^{-y} \left(\frac{dy}{dx}\right)^2 + e^{-y} \frac{d^2 y}{dx^2}$	M1		Product rule OE and chain rule		
	$\frac{d^4 y}{dx^4} = -e^{-y} \left(\frac{dy}{dx} \right)^2 - (e^{-y})^2$	A1	3	OE in terms of e^{-y} and $\frac{dy}{dx}$ only		
(d)	y(0) = 0; y'(0) = 1; y''(0) = -1;	B1F		Ft only for $y'(0)$; other two values must be correct		
	$y(x) \approx y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y^{(iv)}(0)$	M1		Maclaurin's theorem applied with numerical values for $y'(0)$, $y''(0)$, $y'''(0)$ and $y^{(iv)}(0)$. M0 if missing an expression for any one of the 1 st , 3 rd or 4 th derivatives		
	y'''(0) = 1; y'''(0) = -2 $\ln(1 + \sin x) \approx x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 \dots$	A1	3	A0 if FIW		
	Total		11			

Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	M1		OE Relevant chain rule eg $\frac{dy}{dx} = \frac{dt}{dx} \frac{dy}{dt}$
	$e^{t} \frac{dy}{dx} = \frac{dy}{dt} \Longrightarrow x \frac{dy}{dx} = \frac{dy}{dt}$	A1		OE eg $\frac{dy}{dx} = e^{-t} \frac{dy}{dt}$
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}; \ \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}x}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	M1		OE. Valid 1 st stage to differentiate $x y'(x)$ oe with respect to t or to differentiate $x^{-1}y'(t)$ oe with respect to x .
	$\frac{\mathrm{d}x}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	ml		Product rule (dep on previous M)
	$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^{2} y}{\mathrm{d}t^{2}}$	A1		OE eg $\frac{d^2 y}{dx^2} = e^{-t} \left[-e^{-t} \frac{dy}{dt} + e^{-t} \frac{d^2 y}{dx^2} \right]$ (Note: e^{-t} could be replaced by $1/x$)
	$x^{2} \frac{d^{2} y}{dx^{2}} - 4x \frac{dy}{dx} + 6y = 3 + 20 \sin(\ln x)$ becomes			Trole. e could be replaced by 1/x;
	$\frac{d^2 y}{dt^2} - x\frac{dy}{dx} - 4x\frac{dy}{dx} + 6y = 3 + 20\sin(\ln x)$			
	$\Rightarrow \frac{d^2 y}{dt^2} - 5\frac{dy}{dt} + 6y = 3 + 20\sin(\ln e^t)$	ml		Substitution to reach a 'one-step away' stage for LHS. Dep on previous M M m
	$\Rightarrow \frac{d^2 y}{dt^2} - 5\frac{dy}{dt} + 6y = 3 + 20\sin t$	A1	7	CSO AG
(b)	Auxl eqn $m^2 - 5m + 6 = 0$ (m-2)(m-3) = 0, m = 2, 3	M1 A1		PI
	CF: $(y_c =) Ae^{2t} + Be^{3t}$	A1F		Ft wrong values of <i>m</i> provided 2 real roots, and 2 arb. constants in CF. Condone <i>x</i> for <i>t</i> here
	P.Int. Try $(y_P =) a + b \sin t + c \cos t$	M1		Condone 'a' missing here
	$(y'(t)=) b \cos t - c \sin t$ $(y''(t)=) - b \sin t - c \cos t$	Al A1F		ft can be consistent sign error(s)
	Substitute into DE gives	M1		Substitution and comparing coefficients at
	<i>a</i> = 0.5	B1		least once
	5c + 5b = 20 and $5c - 5b = 0b = c = 2$	A1 A1		OE
	GS	711		Ft on c's CF + PI, provided PI is non-zero
	$(y=) Ae^{2t} + Be^{3t} + 2\sin t + 2\cos t + \frac{1}{2}$	B1F	11	and CF has two arbitrary constants and RHS is fn of <i>t</i> only
(c)	y = Ax ² + Bx ³ + 2 sin (ln x) + 2 cos (ln x) + 0.5	B1	1	САО
	Total		19	

0	Solution	Marks	Total	Comments
8 (a)	$xy = 8 \implies r\cos\theta r\sin\theta = 8$	M1		
	$\frac{1}{2}r^2\sin 2\theta = 8$	ml		Use of $\sin 2\theta = 2\sin\theta\cos\theta$
	$r^2 = \frac{16}{\sin 2\theta} = 16 \operatorname{cosec} 2\theta$	A1	3	AG Completion
(b)(i)	(At N, r is a minimum $\Rightarrow \sin 2\theta = 1$) N $\left(4, \frac{\pi}{4}\right)$	B1B1	2	B1 for each correct coordinate.
(ii)	At pts of intersection, $(4\sqrt{2})^2 = 16 \operatorname{cosec} 2\theta$	M1		
	$\sin 2\theta = \frac{1}{2}$	A1		PI by cosec $2\theta = 2$ and a correct exact or 3SF value for 2θ or θ
	$2\Theta = \frac{\pi}{6} , \frac{5\pi}{6}$	A1		PI OE exact values
	$\left(4\sqrt{2} , \frac{\pi}{12}\right) \left(4\sqrt{2} , \frac{5\pi}{12}\right)$	A1	4	Both required, written in correct order
(iii)	$\angle POQ = \frac{5\pi}{12} - \frac{\pi}{12} = \frac{\pi}{3}$ or $\angle PON = \frac{\pi}{6} (= \angle QON)$	B1F		Ft on c's θ_P , θ_Q , θ_N as appropriate OE
	$PN^{2} = (4\sqrt{2})^{2} + (r_{N})^{2} - 2(4\sqrt{2}) r_{N} \cos\left(\frac{1}{2}POQ\right)$ or $PT = 4\sqrt{2} \sin\left(\frac{1}{2}POQ\right)$ or $PT = \frac{1}{2} \times 4\sqrt{2}$ or $NT = 4\sqrt{2} \cos\left(\frac{1}{2}POQ\right) - r_{N}$	M1		Finding the lengths of two unequal sides of ΔPNQ or ΔPNT or ΔQNT , where <i>T</i> is the point at which <i>ON</i> produced meets <i>PQ</i> . Any valid equivalent methods eg finding tan $\angle OPN$ or finding sin $\angle ONP$.
	$PN = \sqrt{48 - 16\sqrt{6}} [=2.96(7855)] = NQ$ or $PT = 2\sqrt{2} [=2.82(8427)]$ or $PQ = 4\sqrt{2}$ or $NT = 2\sqrt{6} - 4 [=0.898(979)]$	A1		Two correct unequal lengths of sides of ΔPNQ or ΔPNT or ΔQNT PI OE eg tan $\angle OPN = 1/(2\sqrt{2} - \sqrt{3})$ or sin $\angle ONP = 2\sqrt{2}/(\sqrt{48 - 16\sqrt{6}})$
	$\tan \frac{\alpha}{2} = \frac{PT}{NT} = \frac{2\sqrt{2}}{2\sqrt{6} - 4} [=3.14626] \text{ OE}$ or $\frac{\alpha}{2} = \frac{\pi}{2} - \left[\frac{\pi}{3} - \tan^{-1}\left(\frac{1}{2\sqrt{2} - \sqrt{3}}\right)\right]$ or $32 = 2PN^2(1 - \cos\alpha) \Rightarrow 1 - \cos\alpha = \frac{1}{3 - \sqrt{6}}$	m1		Valid method to reach an eqn in α (or in $\frac{\alpha}{2}$) only; dep on prev M but not on prev A. Alternative choosing eg obtuse <i>ONP</i> then $\frac{\alpha}{2} = \pi - 1.87(85)$
	$\frac{\alpha}{2} = 1.263056; \alpha = 2.52612.53$ to 3sf	A1	5	2.53 Condone >3sf.
	Total		14	
1		1	15	1

Version

General Certificate of Education (A-level) January 2013

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)	$y(3.2) = y(3) + 0.2\sqrt{2 \times 3 + 5}$	M1		
	$= 5 + 0.2 \times \sqrt{11}$	A1		
	= 5.66332 = 5.6633 to 4dp	A1	3	Condone >4dp
(b)	$y(3.4) = y(3) + 2(0.2) \{f[3.2, y(3.2)]\}$	M1		
	$\dots = 5 + 2(0.2)\sqrt{2 \times 3.2 + 5.6633}$	A1F		Ft on cand's answer to (a)
	$(= 5 + (0.4)\sqrt{12.0633})$			
	= 6.389 to 3dp	A1	3	CAO Must be 6.389
	Total		6	
2				Ignore higher powers beyond x^2
(a)	$e^{3x} = 1 + 3x + 4.5x^2$	B1	1	throughout this question
(b)	$(1+2x)^{-3/2} = 1-3x+\frac{15}{2}x^2$	M1		$(1+2x)^{-3/2} = 1 \pm 3x + kx^2$ or $1 + kx \pm 7.5x^2$ OE
		A1		$1-3x+7.5x^2$ OE (simplified PI)
	$e^{3x} (1+2x)^{-3/2} =$ (1+3x+4.5x ²)(1-3x+7.5x ²)	M1		Product of c's two expansions with an attempt to multiply out to find x^2 term
	x^{2} term(s): $7.5x^{2} - 9x^{2} + 4.5x^{2} = 3x^{2}$.	A1	4	
	Total		5	

6				a
Q	Solution	Marks	Total	Comments
3	PI: $y_{PI} = kx^2 e^x$	M1		
	$y'_{PI} = 2kxe^{x} + kx^{2}e^{x}$ $y''_{PI} = 2ke^{x} + 4kxe^{x} + kx^{2}e^{x}$	ml		Product rule used in finding both derivatives
	$2ke^{x} + 4kxe^{x} + kx^{2}e^{x} - 4kxe^{x} - 2kx^{2}e^{x} + kx^{2}e^{x} = 6e^{x}$	m1		Subst. into DE
	$2k = 6$; $k = 3$; $y_{PI} = 3x^2 e^x$	A1		CSO
	(GS: $y =$) $e^{x}(Ax+B) + 3x^{2}e^{x}$	B1F	5	$e^{x}(Ax+B) + kx^{2}e^{x}$, ft c's k.
	Total		5	
4(a)	Integrand is not defined at $x = 0$	E1	1	OE
(b)	$\int x^4 \ln x dx = \frac{x^5}{5} \ln x - \int \frac{x^5}{5} \left(\frac{1}{x}\right) dx$	M1 A1		= $kx^5 \ln x \pm \int f(x)$, with $f(x)$ not involving the 'original' $\ln x$
	$\dots = \frac{x^{3}}{5} \ln x - \frac{x^{3}}{25} (+ c)$ $\int_{0}^{1} x^{4} \ln x dx = \{\lim_{a \to 0} \int_{a}^{1} x^{4} \ln x dx \}$	A1		
	$= -\frac{1}{25} - \frac{\lim_{a \to 0} \left[\frac{a^5}{5} \ln a - \frac{a^5}{25}\right]}{a \to 0}$	M1		Limit 0 replaced by a limiting process and $F(1)-F(a)$ OE
	But $\lim_{a \to 0} a^5 \ln a = 0$	E1		Accept $\lim_{x \to 0} x^k \ln x = 0$ for any $k \ge 0$
	So $\int_{0}^{1} x^{4} \ln x dx = -\frac{1}{25}$	Λ1	6	Den on M and A marks all scored
	J0 25	AI	0 7	Dep on W and A marks an scored
	Total		1	

Q	Solution	Marks	Total	Comments
5	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\sec^2 x}{\tan x} y = \tan x$			
(a)	IF is exp $(\int \frac{\sec^2 x}{\tan x} dx)$	M1		and with integration attempted
	$= e^{\ln(\tan x)} = \tan x$	A1	2	AG Be convinced
(b)	$\tan x \frac{\mathrm{d}y}{\mathrm{d}x} + (\sec^2 x)y = \tan^2 x$			
	$\frac{\mathrm{d}}{\mathrm{d}x}[y\tan x] = \tan^2 x$	M1		LHS as differential of $y \times IF$ PI
	$y \tan x = \int \tan^2 x \mathrm{d}x$	A1		
	$\Rightarrow y \tan x = \int (\sec^2 x - 1) \mathrm{d}x$	m1		Using $\tan^2 x = \pm \sec^2 x \pm 1$ PI or other valid methods to integrate $\tan^2 x$
	$y \tan x = \tan x - x \ (+c)$	A1		Correct integration of $\tan^2 x$; condone absence of $+c$.
	$3\tan\frac{\pi}{4} = \tan\frac{\pi}{4} - \frac{\pi}{4} + c$	m1		Boundary condition used in attempt to find value of <i>c</i>
	$c = 2 + \frac{\pi}{4}$ so $y \tan x = \tan x - x + 2 + \frac{\pi}{4}$	A1	6	ACF
	$y = 1 + (2 - x + \frac{1}{4}) \cot x$		0	
	Total		8	

0	Solution	Marks	Total	Comments
6(a)(i)	$y = \ln(e^{3x} \cos x) = \ln e^{3x} + \ln \cos x = 3x + \ln \cos x$	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 + \frac{1}{\cos x} \times (-\sin x)$	M1		Chain rule for derivative of ln cosx
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - \tan x$	A1	3	CSO AG
(ii)	$\frac{d^2 y}{dx^2} = -\sec^2 x; \qquad \frac{d^3 y}{dx^3} = -2\sec x(\sec x \tan x)$	B1; M1		M1 for $d/dx \{ [f(x)]^2 \} = 2f(x)f'(x)$
	$\frac{d^4 y}{dx^4} = -4 \sec x (\sec x \tan x) \tan x - 2 \sec^4 x$	A1	3	ACF
(b)	Maclaurin's Thm:			
	$y(0)+x y'(0)+\frac{x^2}{2!} y''(0)+\frac{x^2}{3!} y'''(0)+\frac{x^4}{4!} y^{(iv)}(0)$			
	$y(0) = \ln 1 = 0; y'(0) = 3; y''(0) = -1;$ $y'''(0) = 0; y^{(iv)}(0) = -2$	M1		Mac. Thm with attempt to evaluate at least two derivatives at $x=0$
	$\ln(e^{3x}\cos x) = 0 + 3x + \frac{-1}{2!}x^2 + \frac{0}{3!}x^3 + \frac{-2}{4!}x^4 \dots$	A1F		At least 3 of 5 terms correctly obtained. Ft one miscopy in (a)
	$= 3x - \frac{1}{2}x^2 - \frac{1}{12}x^4$	A1	3	CSO AG Be convinced
(c)	$\{\ln(1+px)\} = px - \frac{1}{2}p^2x^2$	B1	1	accept $(px)^2$ for p^2x^2 ; ignore higher powers;
(d)(i)	$\left[\frac{1}{x^2}\left\{\ln\left(e^{3x}\cos x\right) - \ln(1+px)\right\}\right] =$			
	$\left[\frac{1}{x^2}\left\{3x - \frac{1}{2}x^2 - O(x^4) - \left(px - \frac{1}{2}p^2x^2 + O(x^3)\right)\right\}\right]$	M1		Law of logs and expansions used;
	For $\lim_{x \to 0} \left[\frac{1}{x^2} \ln \left(\frac{e^{3x} \cos x}{1 + px} \right) \right]$ to exist, $p = 3$	A1		<i>p</i> =3 convincingly found
(ii)	$\dots = \lim_{x \to 0} \left[(\frac{3-p}{x}) - \frac{1}{2} + \frac{p^2}{2} - O(x) \right]$	ml		Divide throughout by x^2 before taking limit. (m1 can be awarded before or after the A1 above)
	Value of limit $= -\frac{1}{2} + \frac{p^2}{2} = 4.$	A1	4	Must be convincingly obtained
	Total		14	

0	Solution	Marks	Total	Comments
7(a)	Solving $\frac{d^2 y}{d^2 y} = 6 \frac{dy}{dy} + 10 y = e^{2t}$ (*)			
	Solving $\frac{dt^2}{dt^2} = 0 \frac{dt}{dt} + 10y = 0$ (1)			
	Auxl. Eqn. $m^2 - 6m + 10 = 0$ $(m - 3)^2 + 1 = 0$	M1		PI Completing sq or using quadratic formula to find <i>m</i> .
	$m = 3 \pm i$	A1		
	CF $(y_{CF} =) e^{3t} (A \cos t + B \sin t)$	M1		OE Condone x for t here; ft c's 2 non-real values for ' m '.
	For PI try $(y_{\rm PI} =) k e^{2t}$	M1		Condone <i>x</i> for <i>t</i> here
	$4k - 12k + 10k = 1 \implies k = \frac{1}{2}$	A1		
	GS of (*) is $(y_{GS} =) e^{3t} (A \cos t + B \sin t) + \frac{1}{2} e^{2t}$	B1F	6	CF +PI with 2 arb. constants and both CF and PI functions of <i>t</i> only
(b)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}t}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}t}$	M1		OE Chain rule
	dx = dx dt			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\frac{\mathrm{d}y}{\mathrm{d}t}$	A1		OE
	$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(2x \frac{dy}{dt} \right) = (2x) \frac{dt}{dx} \frac{d}{dt} \left(\frac{dy}{dt} \right) + 2 \frac{dy}{dt}$	M1		$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{f}(t)) = \frac{\mathrm{d}t}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{f}(t)) \text{ OE}$
	$= (2x)(2x) \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y}{\mathrm{d}t}$	ml		eg $\frac{d}{dt}(g(x)) = \frac{dx}{dt}\frac{d}{dx}(g(x))$ Product rule OE used dep on previous M1 being awarded at
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4t \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2 \frac{\mathrm{d}y}{\mathrm{d}t}$	A1	5	some stage CSO A.G.
(c)	$t^{\frac{1}{2}} \left[4t \frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} \right] - (12t+1)2t^{\frac{1}{2}} \frac{dy}{dt} + 40t^{\frac{3}{2}} y = 4t^{\frac{3}{2}} e^{2t}$	M1		Subst. using (b) into given DE to eliminate all x
	$4t^{\frac{3}{2}}\left\{\frac{d^2 y}{dt^2} - 6\frac{dy}{dt} + 10y\right\} = 4t^{\frac{3}{2}}e^{2t}$			
	$t \neq 0$ so divide by $4t^{\frac{3}{2}}$ gives $\frac{d^2 y}{dt^2} - 6\frac{dy}{dt} + 10y = e^{2t}$ (*)	A1	2	CSO A.G.
(d)	$y = e^{3x^2} (A \cos x^2 + B \sin x^2) + \frac{1}{2}e^{2x^2}$	B1	1	OE Must include $v=$
	Total		14	

<u> </u>		36.3		a b
Q	Solution	Marks	Total	Comments
8(a)(i)	$r = \sin\frac{2\pi}{3}\sqrt{\left(2 + \frac{1}{2}\cos\frac{\pi}{3}\right)} = \frac{\sqrt{3}}{2} \times \sqrt{\frac{9}{4}} = \frac{3\sqrt{3}}{4}$	M1; A1	2	
(ii)	$x = ON = (3\sqrt{3})/8$ Polar eqn of <i>PN</i> is $r \cos \theta = ON$	M1		
	$r = \frac{3\sqrt{3}}{8}\sec\theta$	A1	2	AG Be convinced
(iii)	Area $\Delta ONP = 0.5 \times r_N \times r_P \times \sin(\pi/3)$	M1		OE With correct or ft from (a)(i) (ii), values for r_P and r_N .
	$= \frac{1}{2} \times \frac{3\sqrt{3}}{8} \times \frac{3\sqrt{3}}{4} \times \frac{\sqrt{3}}{2} = \frac{27\sqrt{3}}{128}$	A1	2	Be convinced
(b)(i)	$\int \sin^n \theta \cos \theta \mathrm{d}\theta = \int u^n \mathrm{d}u$	M1		РІ
	$=\frac{\sin^{n+1}\theta}{n+1} (+c)$	A1	2	
(ii)	Area of shaded region bounded by line <i>OP</i>	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	and arc $OP = \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \sin^2 2\theta \left(2 + \frac{1}{2} \cos \theta\right) d\theta$	B1		Correct limits
	$\frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1-\cos 4\theta) \mathrm{d}\theta + \frac{1}{4}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 4\sin^2\theta\cos^2\theta\cos\theta \mathrm{d}\theta$	M1		$2\sin^2 2\theta = \pm 1 \pm \cos 4\theta$
		B1		$\sin^2 2\theta \cos\theta = 4\sin^2 \theta \cos^2 \theta \cos\theta$
	$\begin{bmatrix} \theta & \sin 4\theta \end{bmatrix}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\cdot \cdot 2 \cdot \theta - \cdot 4 \cdot \theta) = 0.10$	A1		Correct integration of $0.5(1-\cos 4\theta)$
	$= \left\lfloor \frac{\pi}{2} - \frac{\pi}{8} \right\rfloor_{\frac{\pi}{3}} + \frac{\pi}{3} \left(\sin^2 \theta - \sin^2 \theta \right) \cos^2 \theta d\theta$	m1		Writing 2 nd integrand in a suitable form to be able to use (b)(i) OE PI
	$= \left[\frac{\theta}{2} - \frac{\sin 4\theta}{8} + \frac{\sin^3 \theta}{2} - \frac{\sin^5 \theta}{5}\right]^{\frac{\pi}{2}}$	A1		Last two terms OE
	$\begin{bmatrix} 2 & 0 & 5 & 5 \\ & & 3 \end{bmatrix} \frac{\pi}{3}$			
	$=\frac{\pi}{12} - \frac{21\sqrt{3}}{160} + \frac{2}{15}$	A1	8	CSO
	Total		16	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$k_1 = 0.2 \times (2 - 1)\sqrt{2 + 1}$ (= 0.2 $\sqrt{3}$)	M1		PI. May be seen within given formula.
	= 0.346(410) (= *)			Accept 3dp or better as evidence of the
	$k_2 = 0.2 \times f(2.2, 1 + *)$			M1 line.
	$= 0.2 \times (2.2 - 1.346)\sqrt{2.2 + 1.346}$	M1		$0.2 \times (2.2 - 1 - c's k_1)\sqrt{(2.2 + 1 + c's k_1)}$ PI May be seen within given formula.
	= 0.321(4946)	A1		3dp or better. PI by later work
	$y(2.2) = y(2) + \frac{1}{2} [k_1 + k_2]$			
	$= 1 + 0.5 \times [0.3464 + 0.3214]$	m1		Dep on previous two Ms but ft on c's numerical values for k_1 and k_2 following
	$= 1 + 0.5 \times 0.667904$			evaluation of these.
	(= 1.33395) = 1.334 to 3dp	A1	5	CAO Must be 1.334 SC Any <u>consistent</u> use of a MR/MC of printed $f(x,y)$ expression in applying IEF, mark as SC2 for a correct ft final 3dp
	Total		5	value otherwise SC0.
2	$(x+8)^2 + (y-6)^2 = 100$ x ² + y ² + 16x - 12y + 64 + 36 (= 100)	B1		OE If polar form before expn of brackets award the B1 for correct expansions of both $(r\cos\theta - m)^2$ and $(r\sin\theta - n)^2$ where (m,n) = (-8, 6) or $(m,n) = (6, -8)$
	$r^2 + 16r\cos\theta - 12r\sin\theta = 0$	M1M1		1 st M1 for replacement using any one of { $[x^2 + y^2 = r^2, x = r \cos \theta, y = r \sin \theta](*)$ } 2 nd M1 for use of (*) to convert the form $x^2+y^2+ax+by=0$ correctly to the form $r^2+ar\cos\theta + br\sin\theta=0$ or better
	{ $r=0, \text{ origin}$ } Circle: $r = 12\sin\theta - 16\cos\theta$	A1	4	
	Total		4	

Q	Solution	Marks	Total	Comments
3(a)	$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 3x - 8e^{-3x}$ P. Integral : $y_{PI} = a + bx + cxe^{-3x}$ $y'_{PI} = b + ce^{-3x} - 3cxe^{-3x}$ $y''_{PI} = -6ce^{-3x} + 9cxe^{-3x}$	M1		Product rule used at least once giving terms in the form $\pm pe^{-3x} \pm qxe^{-3x}$
	$-6ce^{-3x} + 9cxe^{-3x} + 2b + 2ce^{-3x} - 6cxe^{-3x}$ $-3a - 3bx - 3cxe^{-3x} = 3x - 8e^{-3x}$	M1		Substitution into LHS of DE
	-3b = 3; $2b - 3a = 0$; $-4c = -8$	m1		Dep on 2 nd M only Equating coeffs to obtain at least two of these correct eqns; PI by correct values for at least two constants
	$b = -1$; $c = 2$; $a = -\frac{2}{3}$	A2,1,0	5	Dep on M1M1m1 all awarded A1 if any two correct; A2 if all three correct but do not award the 2^{nd} A mark if terms in xe^{-3x} were incorrect in the M1 line
	$[y_{PI} = -\frac{2}{3} - x + 2xe^{-3x}]$			
(b)	Aux. eqn. $m^2 + 2m - 3 = 0$ (m+3)(m-1) = 0	M1		Factorising or using quadratic formula OE PI by correct two values of ' <i>m</i> ' seen/used
	$(y_{CF} =)Ae^{-3x} + Be^{x}$ $(y_{GS} =)Ae^{-3x} + Be^{x} - \frac{2}{3} - x + 2xe^{-3x}$	AI B1F	3	c's CF + c's PI with 2 arbitrary constants, non-zero values for a,b and c and no trig or ln terms in c's CF
(c)	$x = 0, y = 1 \implies 1 = A + B - \frac{2}{3}$	B1F		Only ft if previous B1F has been awarded
	$\frac{dy}{dx} = -3Ae^{-3x} + Be^{x} - 1 + 2e^{-3x} - 6xe^{-3x}$ As $x \to \infty$, ($e^{-3x} \to 0$ and) $xe^{-3x} \to 0$	E1		Must treat xe^{-3x} separately
	(As $x \to \infty$, $\frac{dy}{dx} \to -1$ so) $B = 0$ When $B = 0$, $1 = 4 - \frac{2}{2} \to 4 = \frac{5}{2}$	B1		$B=0$, where B is the coefficient of e^x .
	$y = \frac{5}{3}e^{-3x} - \frac{2}{3} - x + 2xe^{-3x}$	A1	4	
	Total		12	

Q	Solution	Marks	Total	Comments
4	$\int \left(\frac{2x}{x^2+4} - \frac{4}{2x+3}\right) dx = \ln(x^2+4) - 2\ln(2x+3) \ \{+c\}$	B1 B1		OE
	(I=) $\lim_{a \to \infty} \int_{0}^{a} \left(\frac{2x}{x^{2}+4} - \frac{4}{2x+3} \right) dx$	M1		∞ replaced by a (OE) and $\lim_{a \to \infty}$ seen or taken at any stage
	$= \lim_{a \to \infty} \left[\ln \left(x^2 + 4 \right) - 2 \ln (2x + 3) \right]_0^a$			Remaining marks are dep on getting $p\ln(x^2+4)+q\ln(2x+3)$ after integration, where <i>p</i> and <i>q</i> are non-zero constants
	$= \lim_{a \to \infty} \left[\ln(a^2 + 4) - 2\ln(2a + 3) \right] - (\ln 4 - 2\ln 3)$ $= \lim_{a \to \infty} \left[\ln\left(\frac{a^2 + 4}{(2a + 3)^2}\right) \right] - (\ln 4 - \ln 9)$	M1		Dealing with the 0 limit correctly and using $\ln P - \ln Q = \ln(P/Q)$ at least once at any stage either before or after using F()-F(0). OE
	$= \lim_{a \to \infty} \left[\ln \left(\frac{1 + \frac{4}{a^2}}{4 + \frac{12}{a} + \frac{9}{a^2}} \right) \right] - (\ln 4 - \ln 9)$	M1		Writing $F(a)$ OE in a suitable form when considering $a \rightarrow \infty$. OE
	$I = \int_0^\infty \left(\frac{2x}{x^2 + 4} - \frac{4}{2x + 3}\right) dx = \ln\frac{1}{4} - \ln\frac{4}{9} = \ln\frac{9}{16}$	A1	6	CSO
	Total		6	

PMT

Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln(\ln x)\right] = \frac{1}{\ln x} \times \frac{1}{x}$	B1	1	ACF
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x\ln x} y = 9x^2$			
	An IF is exp { $\int [1/(x \ln x)] (dx)$ }	M1		and with integration attempted
	$= e^{\ln(\ln x)} = \ln x$	A1	2	AG Must see $e^{\ln(\ln x)}$ before $\ln x$
(ii)	$\ln x \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x} y = 9x^2 \ln x$			
	$\frac{\mathrm{d}}{\mathrm{d}x} \big[y \ln x \big] = 9x^2 \ln x$	M1		LHS as differential of $y \times \ln x$ PI
	$y \ln x = \int 9x^2 \ln x \mathrm{d}x$	A1		
	$\Rightarrow y \ln x = \int \ln x d[3x^3]$			
	$=3x^3\ln x - \int 3x^3\left(\frac{1}{x}\right) dx$	ml		$\int kx^2 \ln x (\mathrm{d}x) = px^3 \ln x - \int px^3 \left(\frac{1}{x}\right) (\mathrm{d}x)$
				or better
	$y \ln x = 3x^3 \ln x - x^3 (+c)$	A1		ACF Condone missing '+ c '
	When $x = e$, $y = 4e^3$, $4e^3 = 3e^3 - e^3 + c$ $c = 2e^3$	ml		Dep on previous M1m1. Boundary condition used in attempt to find value of 'c' after integration is completed
	$\Rightarrow y \ln x = 3x^3 \ln x - x^3 + 2e^3$ $y = 3x^3 - \frac{(x^3 - 2e^3)}{\ln x}$	A1	6	ACF
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)	$y = (4 + \sin x)^{1/2}$ so $y^2 = 4 + \sin x$			
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$	M1		$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$
	$y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x$	A1	2	
(a)	Altn $dy = 1$ ($y = y = 1/2$			
	$\frac{dy}{dx} = \frac{1}{2} (4 + \sin x)^{-1/2} (\cos x)$	(M1)		Chain rule
	$y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\cos x$	(A1)	(2)	
(b)	$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -\frac{1}{2}\sin x$	M1		Correct differentiation of $y \frac{dy}{dx}$
	When $x = 0$, $y = 2$, $\frac{dy}{dx} = \frac{1}{4}$, $2\frac{d^2y}{dx^2} + \left(\frac{1}{4}\right)^2 = 0$	A1F		Ft on RHS of M1 line as <i>k</i> sin <i>x</i>
	$y\frac{d^{3}y}{dx^{3}} + \frac{dy}{dx}\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}} = -\frac{1}{2}\cos x$	m1 A1		Correct LHS
	When x=0, $2\frac{d^3 y}{dx^3} + 3\left(\frac{1}{4}\right)\left(-\frac{1}{32}\right) = -\frac{1}{2} \Rightarrow \frac{d^3 y}{dx^3} = -\frac{61}{256}$	A1	5	CSO
(b)	Altn $\frac{d^2 y}{dx^2} = -\frac{1}{4} (4 + \sin x)^{-3/2} (\cos^2 x) + \frac{1}{2} (4 + \sin x)^{-1/2} (-\sin x)$	(M1)		Sign and numerical coeffs errors only.
		(A1)		ACF
	$\frac{d^3 y}{dx^3} = \frac{3}{8} \left(4 + \sin x \right)^{-2.5} (\cos^3 x) - \frac{1}{4} \left(4 + \sin x \right)^{-1.5} (-2\cos x \sin x)$	(m1)		Sign and numerical coeffs errors only.
	$-\frac{1}{4}(4+\sin x)^{-1.5}(\cos x)(-\sin x)-\frac{1}{2}(4+\sin x)^{-0.5}\cos x$	(A1)		ACF
	When $x = 0$, $\frac{d^3 y}{dx^3} = \frac{3}{8} \times \frac{1}{32} - \frac{1}{2} \times \left(\frac{1}{2}\right) = -\frac{61}{256}$	(A1)	(5)	CSO
(c)	McC. Thm: $y(0) + x y'(0) + \frac{x^2}{2} y''(0) + \frac{x^3}{3!} y'''(0)$	M1		Maclaurin's theorem used with c's numerical values for $y(0)$, $y'(0)$, $y''(0)$ and y'''(0), all found with at least three being non-zero.
	$(4 + \sin x)^{\frac{1}{2}} \approx 2 + \frac{1}{4}x - \frac{1}{64}x^2 - \frac{61}{1536}x^3 \dots$	A1	2	CSO Previous 6 marks must have been scored
	Total		9	

PMT

Q	Solution	Marks	Total	Comments
7(a)	$\sin^2 x \frac{d^2 y}{dx^2} - 2\sin x \cos x \frac{dy}{dx} + 2y = 2\sin^4 x \cos x$			
	$y = u \sin x$			
	$\frac{dy}{dx} = \frac{du}{dx}\sin x + u\cos x$	M1		Both derivatives attempted and product rule used at least twice.
	$\frac{d^2 y}{dx^2} = \frac{d^2 u}{dx^2} \sin x + \frac{du}{dx} \cos x + \frac{du}{dx} \cos x - u \sin x$	A1		Both correct
	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}\sin^3 x + 2\frac{\mathrm{d}u}{\mathrm{d}x}\cos x\sin^2 x - u\sin^3 x - 2\frac{\mathrm{d}u}{\mathrm{d}x}\sin^2 x\cos x$ $-2u\sin x\cos^2 x + 2u\sin x = 2\sin^4 x\cos x$	ml		Substitution into original DE
	$\frac{d^2u}{dx^2}\sin^3 x + u\sin x \left[-\sin^2 x - 2\cos^2 x + 2\right] = 2\sin^4 x \cos x$ $\frac{d^2u}{dx^2}\sin^3 x + u\sin x \left[-\sin^2 x + 2\sin^2 x\right] = 2\sin^4 x \cos x$ (Divide throughout by sin ³ x,) $\frac{d^2u}{dx^2} + u = 2\sin x \cos x$	A1		Need to see clear use of the trig identity
<i>(</i> -)	$\Rightarrow \frac{d^2 u}{dx^2} + u = \sin 2x$	A1	5	AG Completion, be convinced
(b)	For $\frac{d^2 u}{dt^2} + u = \sin 2x$, aux eqn, $m^2 + 1 = 0 \implies m = \pm i$	M1		PI
	$CF: (u =) A \sin x + B \cos x$	A1		OE
	For PI try $(u=) p \sin 2x$	M1		Condone extra terms provided their coefficients are shown to be zero
	$-4p\sin 2x + p\sin 2x = \sin 2x \implies p = -\frac{1}{3}$	A1		Correct Particular integral
	GS for $u = A\sin x + B\cos x - \frac{1}{3}\sin 2x$	B1F		u=g(x), where $g(x)=c$'s (CF+PI) with two arb. constants, PI \neq 0 and all real. Can be implied by next line.
	GS: $y = A\sin^2 x + B\sin x \cos x - \frac{1}{3}\sin 2x \sin x$	A1	6	y=f(x) with ACF for $f(x)$
	Total		11	

Q	Solution	Marks	Total	Comments
8 (a)	At intersections of $r=2$ and $r=3+2\sin\theta$			
	$2 = 3 + 2\sin\theta$	M1		Elimation of <i>r</i>
	$\sin\theta = -\frac{1}{2}, \Rightarrow \theta = \frac{7}{6}\pi, \ \theta = \frac{11}{6}\pi$	A1		Any one correct solution of $\sin \theta = -\frac{1}{2}$
	$(P=) \left(2,\frac{7\pi}{6}\right), (Q=) \left(2,\frac{11\pi}{6}\right)$	A1	3	$\left(2,\frac{7\pi}{6}\right)$ and $\left(2,\frac{11\pi}{6}\right)$
(b)(i)	Angle between <i>OA</i> and initial line = $\frac{\pi}{6}$	B1F		If not correct, ft on $\theta_p - \pi$
	When $\theta = \frac{\pi}{6}$, $r = 3 + 2\sin\frac{\pi}{6} = 4$; $A\left(4, \frac{\pi}{6}\right)$	B1	2	
(ii)	OA = 4, OQ = 2			
	Angle $AOQ = \pi - (\theta_Q - \theta_P) = \frac{\pi}{3}$	B1F		If not correct, ft on $\pi - (\theta_Q - \theta_P)$. OE eg Cartesian coords of A and Q both
	$AQ^{2} = 4^{2} + 2^{2} - 2(4)(2)\cos AOQ$ (=12)	M1		attempted and at least one correct ft. Valid method to find AQ (or AQ^2). Ft on c's r_A for OA
	$AQ = \sqrt{12}$	A1	3	ACF but must be exact surd form.
(iii)	Since $4^2 = 2^2 + (\sqrt{12})^2$ so 90°	E1		Justifying why (angle OQA=) 90° OE
	angle $OQA=90^\circ \Rightarrow AQ$ is a tangent	E1	2	Must have convincingly shown that $OQA = 90^{\circ}$
(c)	Area of minor sector <i>OPQ</i> of circle = $\frac{1}{2}(2)^2 [\theta_Q - \theta_P]$	M1		$\frac{1}{2}(2)^2 \Big[\theta_Q - \theta_P\Big]$
	$=\frac{4\pi}{3}$ Area of minor region <i>OPO</i> of curve =	A1		PI by combined $-\frac{7\pi}{3}$ OE term later.
	$\frac{1}{2}\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} (4\sin^2\theta + 12\sin\theta + 9) \mathrm{d}\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$ or use of $\int_{\theta_p}^{3\pi/2} r^2 d\theta$ OE
		B1		$r^2 = 4\sin^2\theta + 12\sin\theta + 9$
	$=\frac{1}{2}\int \left(2-2\cos 2\theta+12\sin \theta+9\right)\mathrm{d}\theta$	M1		Use of $\cos 2\theta = \pm 1 \pm 2\sin^2 \theta$ with $k \int r^2 (d\theta)$
	$=\frac{1}{2}\left[2\theta-\sin 2\theta-12\cos \theta+9\theta\right]=$	A1F		Ft wrong non zero coefficients, ie for correct integration of $a + b\cos 2\theta + c\sin \theta$
	$\left[\frac{121\pi}{12} + \frac{\sqrt{3}}{4} - \frac{6\sqrt{3}}{2}\right] - \left[\frac{77\pi}{12} - \frac{\sqrt{3}}{4} + \frac{6\sqrt{3}}{2}\right]$	A1		OE eg $\left[\frac{33\pi}{2}\right] - \left[\frac{77\pi}{6} - \frac{\sqrt{3}}{2} + 6\sqrt{3}\right]$
	$\{=\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\}$			$\left \operatorname{eg} \left[\frac{121\pi}{6} + \frac{\sqrt{3}}{2} - 6\sqrt{3} \right] - \left[\frac{33\pi}{2} \right] \right $
	Area of shaded region = $\frac{4\pi}{3} - \left\{\frac{11\pi}{3} - \frac{11\sqrt{3}}{2}\right\}$	M1		$\left \frac{1}{2} (2)^2 \left[\theta_Q - \theta_P \right] - \frac{1}{2} \int_{\theta_P}^{\theta_Q} (3 + 2\sin\theta)^2 d\theta \right $
	$=\frac{11}{2}\sqrt{3}-\frac{7}{3}\pi=\frac{1}{6}\left(33\sqrt{3}-14\pi\right)$	A1	9	CSO $\frac{1}{6} (33\sqrt{3} - 14\pi)$. $(m = 33, n = -14)$
	Total		19	
	TOTAL		75	

A-LEVEL MATHEMATICS

Further Pure 3 – MFP3 Mark scheme

6360 June 2014

Version/Stage: v1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1	DO NOT ALLOW ANY MISREADS IN	THIS QU	ESTION	I
	$k_1 = 0.4 \left[\frac{\ln(6+3)}{\ln 3} \right]$ (=0.8)	M1		PI. May be seen within given formula
	$k_2 = 0.4 \times f(6.4, 3 + k_1)$ = 0.4 \times \frac{\ln(6.4 + 3.8)}{\ln3.8}	M1		$0.4 \times \frac{\ln(6+0.4+3+c' \operatorname{s} k_1)}{\ln(3+c' \operatorname{s} k_1)}$ PI. May be seen within given formula
	$k_2 = 0.4 \times 1.7396 = 0.6958(459)$	A1		0.696 or better. PI by later work
	$y(6.4) = y(6) + \frac{1}{2} [k_1 + k_2]$ = 3 + $\frac{1}{2} [0.8 + 0.6958(459)]$	m1		$3 + \frac{1}{2} [c's k_1 + c's k_2]$ but dependent on previous two Ms scored. PI by 3.748 or 3.7479
	(= 3.747922975) = 3.748 (to 3dp)	A1	5	CAO Must be 3.748
	Total		5	

Q	Solution	Mark	Total	Comment
2(a)	$y = a + b\sin 2x + c\cos 2x$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2b\cos 2x - 2c\sin 2x$	B1		Correct expression for $\frac{dy}{dx}$
	$2b\cos 2x - 2c\sin 2x + 4(a + b\sin 2x + c\cos 2x)$ $(= 20 - 20\cos 2x)$	M1		Differentiation and substitution into LHS of DE
	$4a = 20; \ 4b - 2c = 0; \ 2b + 4c = -20$	m1		Equating coefficients OE to form 3 equations at least two correct. PI by next line
	a = 5, b = -2, c = -4	A1	4	
(b)	Aux. eqn. $m + 4 = 0$	M1		PI Or solving $y'(x)+4y=0$ as far as $y=Ae^{\pm 4x}$ OE
	$(y_{CF} =) A e^{-4x}$	A1		OE
	$(y_{GS} =) Ae^{-4x} + 5 - 2\sin 2x - 4\cos 2x$	B1F		c's CF + c's PI with exactly one arbitrary constant
	When $x=0$, $y=4 \Rightarrow A=3$			
	$y = 3e^{-4x} + 5 - 2\sin 2x - 4\cos 2x$	A1	4	$y = 3e^{-4x} + 5 - 2\sin 2x - 4\cos 2x$ ACF
	Total		8	

PMT

Q	Solution	Mark	Total	Comment
3	4r - 3x = 4	M1		$x = r \cos \theta$ used
	4r = 3x + 4	A1		4r = 3x + 4
	$16r^2 = (3x+4)^2$			
	$16(x^2 + y^2) = (3x + 4)^2$	M1		$x^2 + y^2 = r^2 \text{ used}$
	$16+24x-7x^2$	A1		Must be in form $y^2 = f(x)$ but accept ACF
	$y^2 = \frac{10 + 21x - 7x}{16}$		4	for f(x) eg $y^2 = \frac{(4+7x)(4-x)}{16}$
	Total		4	
	Accept $y^{2} = \frac{(3x+4)^{2} - 16x^{2}}{16}$ and apply IS	SW if inco	orrect sim	plification after seeing this form.

Q	Solution	Mark	Total	Comment
4	Aux eqn $m^2 - 2m - 3 = 0$ (m-3)(m+1) = 0	M1		Correctly factorising or using quadratic formula OE for relevant Aux eqn.
	$(y_{1}, -) A e^{-x} + B e^{3x}$	A1		Fi by confect two values of <i>m</i> seen/used.
	$(y_{CF} -)$ Ac $+ Dc$	M1		
	If $y (y_{PI} =) axe$	1111		
	$(y'_{PI} =) a e^{-x} - a x e^{-x}$ $(y''_{PI} =) - 2a e^{-x} + a x e^{-x}$	M1		Product rule OE used to differentiate xe^{-x} in at least one derivative, giving terms in the form $e^{-x}e^{-x}$
	$-2ae^{-x} + axe^{-x} - 2(ae^{-x} - axe^{-x}) - 3axe^{-x}$	ml		Subst. into LHS of DE
	$\Rightarrow -4a = 2 \Rightarrow a = -\frac{1}{2}$	A1		A0 if terms in xe^{-x} were incorrect in m1 line
	$(y_{GS} =) A e^{-x} + B e^{3x} - \frac{1}{2} x e^{-x}$	B1F		$(y_{GS} =)$ c's CF + c's PI, must have exactly two arbitrary constants
	As $x \to \infty$, $xe^{-x} \to 0$ (and $e^{-x} \to 0$)	E1		As $x \to \infty$, $xe^{-x} \to 0$ OE. Must be treating xe^{-x} term separately
	$y \rightarrow 0$ so $B=0$	B1		$B = 0$, where B is the coefficient of e^{3x}
	$(y'(x) = -Ae^{-x} - 0.5e^{-x} + 0.5xe^{-x})$			
	$(y'(0) = -3 \Longrightarrow -3 = -A - 0.5 \Longrightarrow A = 2.5)$			
	$y = \frac{5}{2}e^{-x} - \frac{1}{2}xe^{-x}$	B1	10	$y = \frac{5}{2}e^{-x} - \frac{1}{2}xe^{-x}$ OE
	Total		10	

Q	Solution	Mark	Total	Comment
5(a)	$\dots = x \left(\frac{1}{2} \sin 8x \right) - \int \frac{1}{2} \sin 8x (dx)$	M1		$kx\sin 8x - \int k\sin 8x (dx)$, with $k = 1, -1$,
				8, -8, 1/8 or -1/8
		A1		$x\left(\frac{1}{8}\sin 8x\right) - \int \frac{1}{8}\sin 8x (\mathrm{d}x)$
	$= x \left(\frac{1}{8}\sin 8x\right) + \frac{1}{64}\cos 8x \ (+c)$	A1	3	
(b)	$\left[\frac{1}{x}\sin 2x\right] = \frac{2x + O(x^3)}{x}$	M1		$\sin 2x \approx 2x$ Ignore higher powers of x. PI by answer 2.
	$\dots = \lim_{x \to 0} \left[2 + O(x^2) \right] = 2$	A1	2	CSO Must see correct intermediate step
(c)	$2\cot 2x$ and $1/x$ are not defined at $x=0$	E1	1	Only need to use one of the two terms. Condone 'Integrand not defined at lower limit' OE
(d)	$\left(\int \left(2\cot 2x - x^{-1} + x\cos 8x\right) dx =\right)$			
	$\ln \sin 2x - \ln x + x \left(\frac{1}{8}\sin 8x\right) + \frac{1}{64}\cos 8x$	B1F		Ft c's answer to part (a) ie $\ln \sin 2x - \ln x + c$'s answer to part (a)
	$\int_0^{\frac{\pi}{4}} (\dots) dx = \lim_{a \to 0} \int_a^{\frac{\pi}{4}} (\dots) dx$	M1		Limit 0 replaced by a (OE) and $a \rightarrow 0$ seen or taken at any stage with no remaining lim relating to $\pi/4$.
	$\int_{0}^{\frac{\pi}{4}} (\ldots) dx = \left[\frac{x \sin 8x}{8} + \frac{\cos 8x}{64}\right]_{0}^{\frac{\pi}{4}} + \ln 1 - \ln(\frac{\pi}{4}) - \frac{\lim_{a \to 0} \left[\ln\left(\frac{\sin 2a}{a}\right)\right]}{\left[\ln\left(\frac{\sin 2a}{a}\right)\right]}$			$\lim_{a \to 0} \left[\ln \left(\frac{\sin 2a}{a} \right) \right]$
	$= \frac{1}{64} - \frac{1}{64} - \ln\left(\frac{\pi}{4}\right) - \lim_{a \to 0} \left[\ln\left(\frac{\sin 2a}{a}\right)\right]$	M1		$F(\pi/4)-F(0)$, with $\ln[(\sin 2x)/x]$ a term in $F(x)$, and at least all non ln terms evaluated
	$= -\ln\left(\frac{\pi}{4}\right) - \ln 2 = -\ln\left(\frac{\pi}{2}\right)$	A1	4	OE single term in exact form, eg $\ln\left(\frac{2}{\pi}\right)$.
	Total		10	
(a)	Example: $u=x, v'=\cos 8x; u'=1, v = \frac{1}{2}\sin x$	8x and	$\dots = uv$	$-\int v u'$ all seen and substitution into
	$uv - \int v u'$ with no more than one misconv	award th	e M1	
	J	,		

Q	Solution	Mark	Total	Comment
6(a)	$\prod_{i=1}^{n} \int \frac{2x}{x^2+4} dx$			
	IF IS C $-\ln(x^2+4)(+c) = -\ln(x^2+4)^{-1}(+c)$	MI Al		Either O.E. Condone missing '+ c '
	$= e^{-1} = e^{-1}$ = (A)(x ² +4) ⁻¹	A1F		Et on earlier $e^{\lambda \ln(x^2+4)}$ condone missing A
				, condone missing A
	$\frac{1}{1} \frac{\mathrm{d}u}{\mathrm{d}u} - \frac{2x}{\mathrm{d}u} = 3$			
	$(x^2+4) dx (x^2+4)^2$			
	$\frac{d}{du}[(x^2+4)^{-1}u]=3$	M1		LHS as $d/dx(u \times c$'s IF) PI
	di			
	$(x^2 + 4)^{-1}u = 3x \ (+C)$	Al		Condone missing $+C'$ here.
	(GS): $u = (3x + C)(x^2 + 4)$	A1	6	Must be in the form $\mu = f(x)$, where $f(x)$ is
			Ũ	ACF
(b)	$u = x^2 \frac{dy}{dt}$ so $\frac{du}{dt} = x^2 \frac{d^2y}{dt^2} + 2x \frac{dy}{dt}$	M1		$\frac{\mathrm{d}u}{\mathrm{d}x} = \pm x^2 \frac{\mathrm{d}^2 y}{2} \pm px \frac{\mathrm{d}y}{2}, p \neq 0$
	$dx dx dx^2 dx$			$dx dx^2 dx$
		A1		
	$x^{2}(x^{2}+4)\frac{d^{2}y}{2}+8x\frac{dy}{2}=$			
	$dx^2 dx$			
	$= \left(x^2 + 4\right)\left(\frac{\mathrm{d}u}{\mathrm{d}x} - 2x\frac{\mathrm{d}y}{\mathrm{d}x}\right] + 8x\frac{\mathrm{d}y}{\mathrm{d}x}$			
	$-(r^2+4)\frac{du}{du}-2r^3\frac{dy}{dy}$			
	$-(x + 4)\frac{dx}{dx} - 2x\frac{dx}{dx}$	1		
	$=(x^2+4)\frac{\mathrm{d}u}{\mathrm{d}u}-2xu$	ml		substitution into LHS of DE and correct ft simplification as far as no y's present.
	ax			1 7 1
	Given DE becomes:			
	$(x^{2}+4)\frac{\mathrm{d}u}{\mathrm{d}x}-2xu=3(x^{2}+4)^{2}$			
	$du = 2x \qquad 2(x^2 + 4)$			
	$\Rightarrow \frac{1}{dx} - \frac{1}{x^2 + 4}u = 3(x + 4)$	A1	4	CSO AG
(c)	Γ () (2 + Ω)(² + 4)			
(0)	From (a), $u = (3x + C)(x^2 + 4)$			dy = c's f(x) answer to part (a)
	So $\frac{dy}{dx} = \frac{(3x+C)(x+4)}{x^2}$	M1		$\frac{dy}{dx} = \frac{c \sin(x) \operatorname{answer to part (a)}}{r^2}$ stated or
				used
	$\frac{dy}{dt} = \frac{12}{12} + \frac{4C}{2} + 3x + C$			
	$dx x x^2$			
	$y = 12 \ln x - \frac{4C}{x} + \frac{5x}{2} + Cx + D$	A1	2	OE
	Total		12	
(b)	$d^2 y \pm x^2 \frac{du}{dt} \pm pxu$	d^2 ····································	$x^2 \frac{\mathrm{d}u}{1} - 2$	хи
	Altn: $\frac{d^2 y}{dx^2} = \frac{dx}{(x^2)^2}$, $p \neq 0$ (M1)	$\frac{d^2 y}{dx^2} = -$	$\frac{dx}{(x^2)^2}$	— (A1)
			(x)	

Q	Solution	Mark	Total	Comment
7(a)(i)	$dy - \sin x + \cos x$	M1		Chain rule OE (sign errors only)
	$y = \ln(\cos x + \sin x), \frac{dx}{dx} = \frac{1}{\cos x + \sin x}$	A1		ACF eg $e^{y} y'(x) = \cos x - \sin x$
	$y'' = \frac{-(\cos x + \sin x)^2 - (-\sin x + \cos x)^2}{(\cos x + \sin x)^2}$	ml		Quotient rule (sign errors only) OE eg $e^{y} [y']^{2} + e^{y} y'' = \pm \cos x \pm \sin x$
	$=\frac{-2(\cos^2 x + \sin^2 x)}{(\cos x + \sin x)^2} = \frac{-2}{1 + 2\cos x \sin x}$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{2}{1+\sin 2x}$	A1	4	CSO AG Completion must be convincing
(a)(ii)	$\frac{d^3 y}{dx^3} = 4(1 + \sin 2x)^{-2} \cos 2x$	B1	1	ACF for $\frac{d^3 y}{dx^3}$
(b)(i)	y(0) = 0; y'(0) = 1; y''(0) = -2; y'''(0) = 4	B1F		Ft only for $y'(0)$ and $y'''(0)$
	$y(x) \approx y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{3!}y'''(0)$	M1		Maclaurin's theorem applied with numerical vals. for $y'(0)$, $y''(0)$ and $y'''(0)$. M0 if cand is missing an expression OE for the 1 st or 3 rd derivatives
	$y(x) \approx x - \frac{2}{2}x^2 + \frac{4}{6}x^3 = x - x^2 + \frac{2}{3}x^3$	A1	3	CSO AG Dep on all previous 7 marks awarded with no errors seen.
(b)(ii)	$\ln(\cos x - \sin x) \approx -x - x^2 - \frac{2}{3}x^3$	B1	1	$-x-x^2-\frac{2}{3}x^3$
(c)	$\ln\left(\frac{\cos 2x}{e^{3x-1}}\right) = \ln\cos 2x - (3x-1)$	B1		
	$\ln(\cos 2x) = \ln[(\cos x + \sin x)(\cos x - \sin x)]$ = $\ln(\cos x + \sin x) + \ln(\cos x - \sin x)$	B1		
	$\ln\!\left(\frac{\cos 2x}{e^{3x-1}}\right) \approx$			
	$\approx x - x^{2} + \frac{2}{3}x^{3} - x - x^{2} - \frac{2}{3}x^{3} - 3x + 1$	M1		
	$\approx 1 - 3x - 2x^2$ Total	A1	4	CSO Must have used 'Hence'.
		1 1 "	1.5.(32)	
(a)(1)	For guidance, working towards AG may inc	iude $y^n =$	-1-[y [,]] ²	

Q	Solution	Mark	Total	Comment
8(a)	(Area=) $\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 - \tan^2 \theta)^2 \sec^2 \theta (d\theta)$	M1		Use of $\frac{1}{2}\int r^2 (d\theta)$ or use of $\int_0^{\frac{\pi}{4}} r^2 (d\theta)$ OE
	(or) $\int_{0}^{\frac{\pi}{4}} (1 - \tan^2 \theta)^2 \sec^2 \theta (d\theta)$	B1		Correct limits
	Let $u = \tan \theta$ so (Area) = $\int_{(0)}^{(1)} (1 - u^2)^2 du$	M1		Valid method to integrate $\tan^n \theta \sec^2 \theta$, n=2 or 4, could be by inspection.
	(Area) = $\left[u - \frac{2u^3}{3} + \frac{u^5}{5}\right]_0^1$	A1		Correct integration of $k(1 - \tan^2 \theta)^2 \sec^2 \theta$ OE; ignore limits at this stage
	$= \left(1 - \frac{2}{3} + \frac{1}{5}\right) (-0) = \frac{8}{15}$	A1	5	CSO AG
(b) (i)	$(1 - \tan^2 \theta) \sec \theta = \frac{1}{2} \sec^3 \theta$	M1		Elimination of <i>r</i> or θ . [$r = 2(2r)^{\frac{1}{3}} - 2r$]
	$1 - \tan^2 \theta = \frac{1}{2} \left(1 + \tan^2 \theta \right)$	ml		Using $1 + \tan^2 \theta = \sec^2 \theta$ OE to reach a correct equation in one 'unknown'.
	$\tan^2 \theta = \frac{1}{3}; \ \theta = \pm \frac{\pi}{6}; \ r = \frac{4}{3\sqrt{3}}$			
	Coordinates $\left(\frac{4}{3\sqrt{3}}, \frac{\pi}{6}\right) \left(\frac{4}{3\sqrt{3}}, -\frac{\pi}{6}\right)$	A1	3	
(b) (ii)	$\frac{4}{3\sqrt{3}}\sin\alpha = (1)\sin\left(\pi - \frac{\pi}{6} - \alpha\right) \text{OE}$	B1F		OE eg $AP = \sqrt{\frac{7}{27}}$ or eg sin $\alpha = \sqrt{\frac{27}{28}}$.
	$\frac{4}{3\sqrt{3}}\sin\alpha = \sin\frac{\pi}{6}\cos\alpha + \cos\frac{\pi}{6}\sin\alpha$	B1		Or $\cos \alpha = -\frac{1}{\sqrt{28}} \left(=-\frac{\sqrt{7}}{14}\right)$
	$\tan \alpha = \frac{-1/2}{\frac{\sqrt{3}}{2} - \frac{4}{3\sqrt{3}}}$	M1		OE Valid method to reach an exact numerical expression for tan α .
	$\tan \alpha = -3\sqrt{3} (k = -3)$	A1	4	
	Altn for the two B marks			
	$ON = \frac{4}{3\sqrt{3}}\cos\frac{\pi}{6}; AN = \frac{4}{3\sqrt{3}}\sin\frac{\pi}{6};$	(B1F)		OE Any two correct ft . PI eg NP=1/3 (N is foot of perp from A or B to OP)
	$\tan OPA = \frac{2}{\sqrt{3}}$	(B1)		$\tan OPA = \frac{2}{\sqrt{3}} \text{ OE or } \tan PAN = \frac{\sqrt{3}}{2} \text{ OE}$
(b)(iii)	Since $\tan \alpha$ is negative, α is obtuse so point A lies inside the circle. (If A was on the circle α would be a right angle.)	E1F	1	[Then (MT)(AT) as above] Ft c's sign of k .
	Total		13	
Altr (a)	Converts to Cartesian eqn. $v^2 = r^2(1-r)$ (M141).	sets un a	75	egral with correct limits for the area using the
	sym of the curve $(\mathbf{R}1)$: valid method to interm	ate v(1 .	$\frac{1}{\sqrt{2}}$ (M1).	$\frac{8}{15}$ obtained convincingly (A1)
(b)(ii) alt	Alth expressions for M1: $\tan \alpha = -\tan\left(\frac{\pi}{6} + \right)$	OPA = -	$\frac{-\frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}}{1 - \frac{1}{\sqrt{2}} - \frac{2}{\sqrt{3}}}$	$\frac{2}{3}; \tan \alpha = \tan\left(\frac{\pi}{3} + PAN\right) = \frac{\sqrt{3} + \frac{\sqrt{3}}{2}}{1 - \sqrt{3}\frac{\sqrt{3}}{2}}$
			$\sqrt{3}\sqrt{3}$	2

A-LEVEL Mathematics

Further Pure3 – MFP3 Mark scheme

6360 June 2015

Version/Stage: Final Mark Scheme V1

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.
Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
	DO NOT ALLOW ANY MISREADS IN	THIS QU	JESTION	J
(a)	$y(2.05) = y(2) + 0.05\left(\frac{2+5^2}{2}\right)$	M1		
	$= 5 + 0.05 \times 13.5$			
	= 5.675	A1	2	OE
(b)	$y(2.1) = y(2) + 2 \times 0.05 \text{ f}[2.05, y(2.05)]$	M1		
	$= 5 + 2 \times 0.05 \times \left(\frac{2.05 + 5.675^2}{2.05}\right)$	A1F		PI Ft on c's (a) answer.
	= 6.67 to 3 sf	A1	3	CAO Must be 6.67
	Total		5	
	(b) For the PI if line missing, check to see i	f evaluati	on match	es $5.1 + \frac{2}{41} \times [\text{answer}(a)]^2$ to at least 3sf

Q2	Solution	Mark	Total	Comment
	$\int \tan x dx$	M1		
	I.F. e			
	$= e^{\ln \sec x}$	A1		OE eg $e^{-\ln \cos x}$
	$= \sec x$	A1F		OE Only ft sign error in integrating $\tan x$.
	$\sec x \frac{\mathrm{d}y}{\mathrm{d}x} + \sec x (\tan x)y = \tan^3 x \sec^2 x$			
	$\frac{\mathrm{d}}{\mathrm{d}x} [y \sec x] = \tan^3 x \sec^2 x$	M1		LHS as $\frac{d}{dx} [y \times \text{candidate's IF}]$ PI
	$y \sec x = \int \tan^3 x \sec^2 x (\mathrm{d}x)$	A1		
	$y \sec x = \int t^3 dt$	m1		PI OE eg y sec $x = \int \left(\frac{1}{u^3} - \frac{1}{u^5}\right) du$,
				where $u = \cos x$
	$y \sec x = \frac{1}{4} \tan^4 x \ (+c)$	A1		
	$2\sec\frac{\pi}{3} = \frac{1}{4}\tan^4\frac{\pi}{3} + c; 4 = \frac{9}{4} + c$	m1		Dep on prev MMm. Correct boundary condition applied to obtain an eqn in c
				with correct exact value for either $\sec \frac{\pi}{3}$ or
				$\tan^4 \frac{\pi}{3}$ used
	$y \sec x = \frac{1}{4} \tan^4 x + \frac{7}{4}$			
	$y = \frac{\cos x}{4} \left(7 + \tan^4 x\right)$	A1	9	ACF
	Total		9	
	Condone answer left in a 'correct' form diff	erent to y	= f(x), eg	$4y\sec x = \tan^4 x + 7 \ .$

Q3	Solution	Mark	Total	Comment
(a)(i)	$\ln(1+2x) = 2x - \frac{(2x)^2}{2} + \frac{(2x)^3}{3} - \frac{(2x)^4}{4} \dots$ $= 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 \dots$	B1	1	ACF Condone correct unsimplified
(a)(ii)	$\ln[(1+2x)(1-2x)] = \ln(1+2x) + \ln(1-2x)$	M1		$\ln(1+2x) + \ln(1-2x) \text{ PI}$ {or $\ln(1-4x^2) = -4x^2 - \frac{(-4x^2)^2}{2} \dots$ } PI
	$= -4x^2 - 8x^4 \dots$	A1		CSO Must be simplified
	Expansion valid for $-\frac{1}{2} < x < \frac{1}{2}$	B1	3	Condone $ x < \frac{1}{2}$
(b)	$x\sqrt{9+x} = 3x\left[1+\frac{x}{18}+O(x^2)\right]$	B1		Correct first two terms in expn. of $\sqrt{9+x}$
	$\left[\frac{3x - x\sqrt{9 + x}}{\ln[(1 + 2x)(1 - 2x)]}\right] = \left[\frac{3x - 3x - \frac{3x^2}{18}}{-4x^2 - 8x^4}\right]$	M1		Series expansions used in both numerator and denominator.
	$\lim_{x \to 0} \left[\frac{3x - x\sqrt{9 + x}}{\ln[(1 + 2x)(1 - 2x)]} \right]$			
	$= \lim_{x \to 0} \left[\frac{-\frac{1}{6} + O(x)}{-4 + O(x^2)} \right]$	m1		Dividing numerator and denominator by x^2 to get constant term in each, leading to a finite limit. Must be at least a total of 3 'terms' divided by x^2
	$=\frac{1}{24}$	A1	4	$=\frac{1}{24}$ NOT $\rightarrow \frac{1}{24}$
	Total		8	

Q4	Solution	Mark	Total	Comment
(a)	The interval of integration is infinite	E 1	1	OE
(b)	$\int (x-2)e^{-2x} dx$ $u = x - 2, \frac{dv}{dx} = e^{-2x}, \frac{du}{dx} = 1, v = -0.5e^{-2x}$ $\dots = -\frac{1}{2}(x-2)e^{-2x} - \int -\frac{1}{2}e^{-2x} dx$ $= -\frac{1}{2}(x-2)e^{-2x} - \frac{1}{4}e^{-2x} (+c)$	M1 A1 A1		$\frac{du}{dx} = 1, v = k e^{-2x} \text{ with } k = \pm 0.5, \pm 2$ $-\frac{1}{2}(x-2)e^{-2x} - \int -\frac{1}{2}e^{-2x} (dx) \text{ OE}$
	$\int_{2}^{\infty} (x-2) e^{-2x} dx = \lim_{a \to \infty} \int_{2}^{a} (x-2) e^{-2x} dx$	M1		Evidence of limit ∞ having been replaced by a (OE) at any stage and $\lim_{a \to \infty}$ seen or taken at any stage with no remaining lim relating to 2.
	$\lim_{a \to \infty} \left[-\frac{1}{2} (a-2) e^{-2a} - \frac{1}{4} e^{-2a} \right] - \left(-\frac{1}{4} e^{-4} \right)$			
	Now $\lim_{a \to \infty} a^p e^{-2a} = 0$, $(p>0)$	E1		General statement or specific statement with $p = 1$ stated explicitly. Each must include the 2 in the exponential.
	$\int_{2}^{\infty} (x-2) e^{-2x} dx = \frac{1}{4} e^{-4}$	A1	6	No errors seen in $F(a) - F(2)$. (M1E0A1 is possible)
	Total		7	

Q5	Solution	Mark	Total	Comment	
(a)	Aux eqn $m^2 + 6m + 9 = 0$			Factorising or using quadratic formula OE	
	$(m+3)^2 = 0$	MI		on correct aux eqn. PI by correct value of m' seen/used	
	$(y_{CE} =) (Ax + B)e^{-3x}$	A1			
	Try $(y_{PI} =) a \sin 3x + b \cos 3x$	M1		$a\sin 3x + b\cos 3x$ or Altn. $k\cos 3x$	
	$(y'_{PI} =) 3a \cos 3x - 3b \sin 3x$				
	$(y''_{PI} =) -9a\sin 3x - 9b\cos 3x$				
	$-9a\sin 3x - 9b\cos 3x + 6(3a\cos 3x - 3b\sin 3x)$			Substitution into DE, dep on previous M	
	$+9(a\sin 3x + b\cos 3x) = 36\sin 3x$	ml		and differentiations being in form $n\cos 3x \pm a\sin 3x$	
				or Altr $-3k\sin 3x$ and $-9k\cos 3x$	
	-18b = 36 $18a = 0$	A1		Seen or used	
	$y_{PI} = -2\cos 3x$	A1		Correct y_{PI} seen or used	
	$(y_{GS} =) (Ax + B)e^{-3x} - 2\cos 3x$	B1F	_	$(y_{GS} =)$ c's CF + c's PI, must have exactly	
			7	two arbitrary constants	
(D)(I)	$f''(0) + 6f'(0) + 9f(0) = 36 \sin 0$	E1	1	AG Convincingly shown with no errors.	
	$1^{n}(0) + 6(0) + 9(0) = 0 \implies 1^{n}(0) = 0$				
(b)(ii)	$f'''(0) = 108\cos 0 - 0 - 0 = 108$			$f'''(0) = 108$ and $f^{(iv)}(0) = -648$ seen or used	
	$\mathbf{f}^{(iv)}(0) = 0 - 6 \ \mathbf{f}^{\prime\prime\prime}(0) - 0 = -648$	B 1			
	$f(x) \approx 0 + x(0) + \frac{x^2}{x}(0) + \frac{x^3}{x^3} f'''(0) + \frac{x^4}{x^4} f^{(iv)}(0) \dots$	M1		$f(x) \approx \frac{x^3}{10} f''(0) + \frac{x^4}{100} f^{(iv)}(0)$ used with c's	
		1411		3! $4!$	
	$f(x) \approx \frac{x^3}{2!}(108) + \frac{x^4}{4!}(-648)$			non-zero values for 1 (0) and 1 (0)	
	5! 4! - 18 r^3 27 r^4	A1		$18r^3$ $27r^4$ Ignore one ovtro higher	
	$-10\lambda - 27\lambda$		3	powers of x terms	
	<u>Altn</u> : Use of answer to part (a)				
	$f(x) = (6x+2)e^{-3x} - 2\cos 3x$	[B1]		2	
	=	[M1]		Correct series for e^{-3x} (at least from x^2 terms up to x^4 terms inclusive) and $\cos^3 x$	
				(at least x^2 terms and x^4 terms) substituted	
				and also product of $(px+q)$ term with e^{-3x}	
				series attempted where p and q are numbers	
	$=(2-2)+(6-6)x+(9-18+9)x^2+(27-9)x^3+$				
	$+(6.75-27-6.75)x^4$	FA 11	[2]		
	$= 18x^3 - 27x^4$	[AI]	[3]		
	Total		11		
	If using (a) to answer (b)(i), for guidance, $f''(x) = 54xe^{-3x} - 18e^{-3x} + 18\cos 3x$				

Q6	Solution	Mark	Total	Comment
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	M1		OE Relevant chain rule eg $\frac{dy}{dx} = \frac{dt}{dx} \frac{dy}{dt}$
	$2e^{2t} \frac{dy}{dx} = \frac{dy}{dt} \Rightarrow 2x\frac{dy}{dx} = \frac{dy}{dt}$	A1		OE eg $\frac{dy}{dx} = \frac{1}{2}e^{-2t}\frac{dy}{dt}$
	$\frac{d}{dt}\left(2x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}; \frac{dx}{dt}\frac{d}{dx}\left(2x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}$	M1		OE.Valid 1 st stage to differentiate $xy'(x)$ oe wrt <i>t</i> or to differentiate $x^{-1}y'(t)$ oe wrt <i>x</i> .
	$\frac{\mathrm{d}x}{\mathrm{d}t} \left(2\frac{\mathrm{d}y}{\mathrm{d}x} + 2x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	m1		Product rule OE (dep on MM) to obtain an eqn involving both second derivatives
	$4x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	A1		OE eg $\frac{d^2 y}{dx^2} = \frac{1}{2} e^{-2t} \left[-e^{-2t} \frac{dy}{dt} + \frac{1}{2} e^{-2t} \frac{d^2 y}{dt^2} \right]$
				{Note: e^{-t} could be replaced by $\frac{1}{\sqrt{x}}$ }
	$4\sqrt{x^5} \frac{d^2 y}{dx^2} + 2\sqrt{x} \ y = \sqrt{x} (\ln x)^2 + 5$			
	becomes $\frac{d^2 y}{dt^2} - 4x \frac{dy}{dx} + 2y = (\ln x)^2 + \frac{5}{\sqrt{x}}$	A1		Or better
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = (2t)^2 + \frac{5}{\mathrm{e}^t}$			
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = 4t^2 + 5\mathrm{e}^{-t}$	A1	7	AG Be convinced
(b)	Auxl eqn $m^2 - 2m + 2 = 0$ $(m-1)^2 + 1 = 0$	M1		$(m-1)^2 + k$ or using quadratic formula on correct aux eqn. PI by correct values of 'm' seen/used
	$m = 1 \pm i$	A1		in seelf used.
	CF: $(y_c =) e^t (A \cos t + B \sin t)$	BIF		Ft on $m = p \pm qi$, $p, q \neq 0$ and 2 arb.
	P.Int. Try $(y_P =) a + bt + ct^2 + de^{-t}$	M1		
	$(y'(t)=) b + 2ct - de^{-t}; (y''(t)=) 2c + de^{-t}$ Substitute into DE gives			
	$2c + de^{-t} - 2(b + 2ct - de^{-t}) +$	M1		Substitution and comparing coeffs at least
	$+2(a+bt+ct^{2}+de^{-t}) = 4t^{2} + 5e^{-t}$			once
	d = 1; c = 2 2b - 4c = 0 and $2c - 2b + 2a = 0$	B1		Need both OF PI by c's $h=2\times c$'s c and c's $q=c$'s c
	20 + 10 = 0 and $20 + 20 = 0$			provided c's $c \neq 0$
	b = 4 and $a = 2GS (y=)$	Al		Need both Ft on c's CF + PI, provided PI is non-zero
	$e^{t}(A\cos t + B\sin t) + 2 + 4t + 2t^{2} + e^{-t}$	B1F		and CF has two arbitrary constants and RHS is fn of t only
	$y = \sqrt{x} \left A \cos\left(\ln \sqrt{x} \right) + B \sin\left(\ln \sqrt{x} \right) \right + 2 +$			
	$+2\ln x + \frac{1}{2}(\ln x)^2 + \frac{1}{\sqrt{x}}$	Al	10	y=I(x) with ACF for $f(x)$
	Total		17	

Q7	Solution	Mark	Total	Comment
(a)	Area = $\frac{1}{2} \int_{\left(-\frac{\pi}{2}\right)}^{\left(\frac{\pi}{2}\right)} \left(1 + \cos 2\theta\right)^2 (d\theta)$	M1		Use of $\frac{1}{2}\int r^2 (d\theta)$ or $\int_0^{\frac{\pi}{2}} r^2 (d\theta)$
	$= \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + 2\cos 2\theta + \cos^2 2\theta\right) \mathrm{d}\theta$	B1		Correct expn of $[1+\cos 2\theta]^2$ and correct limits
	$=\frac{1}{2}\int \left(1+2\cos 2\theta+0.5+0.5\cos 4\theta\right)\mathrm{d}\theta$	M1		$2\cos^2 2\theta = \pm 1 \pm \cos 4\theta$ used with $k \int r^2 d\theta$
	$= \frac{1}{2} \left[\theta + \sin 2\theta + 0.5\theta + \frac{1}{8} \sin 4\theta \right] \frac{\pi/2}{-\pi/2}$	A1F		Correct integration ft wrong coefficients
	$=\frac{3}{4}\pi$	A1	5	CSO
(b)(i)	$1 + \sin \theta = 1 + \cos 2\theta$ $1 + \sin \theta = 1 + 1 - 2\sin^2 \theta$	M1		Equating rs (or equating $\sin\theta$ s) followed (or preceded) by $\cos 2\theta = \pm (1 \pm 2 \sin^2 \theta)$
	$(2\sin\theta - 1)(\sin\theta + 1)$ (=0)	A1		Or $r(2r-3)$ (=0), each PI by correct 2 roots
	$\sin \theta = -1$ gives the pole, O	E 1		Or $r = 0$ gives the pt <i>O</i> . OE eg finds 2^{nd} pair of coords $(0, -\pi/2)$ and chooses $(3/2, \pi/6)$
(b)(::)	At A, $\sin \theta = 0.5 \ \operatorname{so} A\left(\frac{3}{2}, \frac{\pi}{6}\right)$	A1	4	$r = 1.5, \theta = \frac{\pi}{6}$
(D)(II)	$r\sin\theta = \frac{3}{4}$	B1F		PI Ft on $r\sin\theta = r_A\sin\theta_A$
	At B, $r = 2 - 2\sin^2 \theta = 2 - 2\left(\frac{9}{16r^2}\right)$	M1		Solving $r \sin \theta = k$ and $r = 1 + \cos 2\theta$ to reach a cubic eqn in r or in $\sin \theta$
	$16r^3 = 32r^2 - 18$	A1		Correct cubic eqn in r
				(or in $\sin\theta \text{eg} 8\sin^3\theta = 8\sin\theta - 3$)
	$(2r-3)(4r^2-2r-3)=0$	A1		Or $(2\sin\theta - 1)(4\sin^2\theta + 2\sin\theta - 3) = 0$
	Since $r_A = 1.5$ and $r_B > 0$, $OB = r_B = \frac{2 + \sqrt{4 + 48}}{8} = \frac{1}{4} (\sqrt{13} + 1)$	A2,1,0	6	A.G. Note: A2 requires correct surd for <i>OB</i> and also correct justifications for ignoring the other two roots of the cubic eqn. Max of A1 if justification absent
(b)(iii)	$AB = \pm (r_1 \cos \theta_1 - r_2 \cos \theta_1)$	M1		OE method to find AB or AB^2 .
				eg $AB = \frac{OB\sin(\theta_B - \theta_A)}{\sin \theta_A}$ OE single 'eqn'
				or $AB^2 = r_A^2 + OB^2 - 2r_AOB\cos(\theta_B - \theta_A)$
				or $OB^2 = r_A^2 + AB^2 - 2r_AAB\cos\theta_A$
	$\cos \theta_B = \sqrt{\frac{r_B}{2}} \left(= \sqrt{\frac{\sqrt{13} + 1}{8}} \right) = (0.758(7))$	m1		OE eg solving correct quadratic
				eg sin $\theta_B = \frac{3}{\sqrt{13} + 1}$ or $\theta_B = 0.709(41)$
	AB = 0.425 (to 3sf)	A1	3	0.425 Condone >3sf (0.425428)
			18 75	
(b)(ii)	$(2\sin\theta - 1)(4\sin^2\theta + 2\sin\theta - 3) = 0 \sin\theta$	= 0.5 (pt	(A), eg sin	$n\theta < -1$ impossible, so $\sin\theta = \frac{-2 + \sqrt{52}}{8}$