AQA Maths Further Pure 3

Mark Scheme Pack

$$
2006-2015
$$

$A Q A$

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme 2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \mathrm{m} \text { or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \hline \text { A } & \text { mark is dependent on } \mathrm{M} \text { or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & (m+1)^{2}=-1 \\ & m=-1 \pm i \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Completing sq or formula
(b)(i)	CF is $\mathrm{e}^{-x}(A \cos x+B \sin x)$ \{or $\mathrm{e}^{-x} A \cos (x+B)$ but not $\left.A \mathrm{e}^{(-1+i) x}+B \mathrm{e}^{(-1-i) x}\right\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \checkmark \end{aligned}$		If m is real give M0 On wrong a 's and b 's but roots must be complex.
	$\begin{aligned} & \text { \{P.Int.\} try } y=p x+q \\ & 2 p+2(p x+q)=4 x \\ & p=2, q=-2 \end{aligned}$	M1 A1 A1 \checkmark		OE On one slip
	GS $y=\mathrm{e}^{-x}(A \cos x+B \sin x)+2 x-2$	B1 \checkmark	6	Their CF + their PI with two arbitrary constants.
(ii)	$\begin{aligned} & x=0, y=1 \Rightarrow A=3 \\ & y^{\prime}(x)=-\mathrm{e}^{-x}(A \cos x+B \sin x)+ \\ &+\mathrm{e}^{-x}(-A \sin x+B \cos x)+2 \\ & y^{\prime}(0)= 2 \Rightarrow 2=-A+B+2 \Rightarrow B=3 \end{aligned}$	B1J M1 A1 $\sqrt{ }$ Al $\sqrt{ }$		Provided an M1 gained in (b)(i) Product rule used Slips
	$y=3 \mathrm{e}^{-x}(\cos x+\sin x)+2 x-2$		4	
	Total		12	
2(a)	$\int x \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{1}{2} x \mathrm{e}^{-2 x}-\int-\frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$		Reasonable attempt at parts
	$=-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}\{+c\}$	A1 \checkmark		Condone absence of $+c$
	$\int_{0}^{a} x \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{1}{2} a \mathrm{e}^{-2 a}-\frac{1}{4} \mathrm{e}^{-2 a}-\left(0-\frac{1}{4}\right)$	M1		$\mathrm{F}(a)-\mathrm{F}(0)$
	$=\frac{1}{4}-\frac{1}{2} a \mathrm{e}^{-2 a}-\frac{1}{4} \mathrm{e}^{-2 a}$	A1	5	
(b)	$\lim _{a \rightarrow \infty} a^{k} \mathrm{e}^{-2 a}=0$	B1	1	
(c)	$\int_{0}^{\infty} x \mathrm{e}^{-2 x} \mathrm{~d} x=$			
	$=\lim _{a \rightarrow \infty}\left\{\frac{1}{4}-\frac{1}{2} a \mathrm{e}^{-2 a}-\frac{1}{4} \mathrm{e}^{-2 a}\right\}$	M1		If this line oe is missing then $0 / 2$
	$=\frac{1}{4}-0-0=\frac{1}{4}$	A1 \checkmark	2	On candidate's " $1 / 4$ " in part (a). B1 must have been earned
	Total		8	

MFP3

Q	Solution	Marks	Total	Comments
3(a)	$y=x^{3}-x \Rightarrow y^{\prime}(x)=3 x^{2}-1$	B1		Accept general cubic.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=3 x^{2}-1+\frac{2 x\left(x^{3}-x\right)}{x^{2}-1}$	M1		Substitution into LHS of DE
	$=3 x^{2}-1+\frac{2 x^{2}\left(x^{2}-1\right)}{x^{2}-1}=5 x^{2}-1$	A1	3	Completion. If using general cubic all unknown constants must be found
(b)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(x^{2}-1\right) y\right]=2 x y+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}$	M1A1		
	Differentiating $\left(x^{2}-1\right) y=c \operatorname{wrt} x$ leads to $2 x y+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ $\Rightarrow y=\frac{c}{x^{2}-1}$ is a soln. of $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=0$	A1	3	SC Differentiated but not implicitly give max of $1 / 3$ for complete solution Be generous
(c)	$\Rightarrow y=\frac{c}{x^{2}-1}$ is a soln with one arb. constant of $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=0$ $\Rightarrow y=\frac{c}{x^{2}-1}$ is a CF of the DE			
	GS is $\mathrm{CF}+\mathrm{PI}$ $y=\frac{c}{x^{2}-1}+x^{3}-x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Must be using 'hence'; CF and PI functions of x only CSO Must have explicitly considered the link between one arbitrary constant and the GS of a first order differential equation.
	Total		8	

MFP3

Q	Solution	Marks	Total	Comments
4(a)	$\ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4} \ldots$	B1	1	
(b)(i)	$\mathrm{f}(x)=\mathrm{e}^{\sin x} \Rightarrow \mathrm{f}(0)=1$	B1		
	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\cos x \mathrm{e}^{\sin x} \\ & \Rightarrow \mathrm{f}^{\prime}(0)=1 \end{aligned}$	M1A1		
	$\begin{aligned} & \mathrm{f}^{\prime \prime}(x)=-\sin x \mathrm{e}^{\sin x}+\cos ^{2} x \mathrm{e}^{\sin x} \\ & \mathrm{f}^{\prime \prime}(0)=1 \end{aligned}$	M1A1		Product rule used
	Maclaurin $\mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2} \mathrm{f}^{\prime \prime}(0)$ so $1^{\text {st }}$ three terms are $1+x+\frac{1}{2} x^{2}$	A1	6	CSO AG
(ii)	$\begin{aligned} & \mathrm{f}^{\prime \prime \prime}(x)=\cos x\left(\cos ^{2} x-\sin x\right) \mathrm{e}^{\sin x}+ \\ & +\{2 \cos x(-\sin x)-\cos x\} \mathrm{e}^{\sin x} \end{aligned}$	M1A1		
(c)	$\mathrm{f}^{\prime \prime \prime}(0)=0$ so the coefficient of x^{3} in the series is zero	A1	3	CSO AG SC for (b): Use of series expansions.... \max of $4 / 9$
	$\sin x \approx x .$	B1		Ignore higher power terms in $\sin x$ expansion
	$\frac{\mathrm{e}^{\sin x}-1+\ln (1-x)}{x^{2} \sin x}=\frac{-\frac{1}{3} x^{3}+o\left(x^{4}\right)}{x^{3}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Series from (a) \& (b) used Numerator $k x^{3}(+\ldots)$
	$\begin{array}{r} =\frac{-\frac{1}{3}+o(x)}{1+o\left(x^{2}\right)} \\ \lim _{x \rightarrow 0} \frac{e^{\sin x}-1+\ln (1-x)}{x^{2} \sin x}=-\frac{1}{3} \end{array}$	A1 \checkmark	4	Condone if this step is missing On candidate's x^{3} coefficient in (a) provided lower powers cancel
	Total		14	

MFP3

MFP3

Q	Solution	Marks	Total	Comments
6(a)	$x^{2}+y^{2}-12 y+36=36$ $r^{2}-12 r \sin \theta+36=36$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { m1 } \end{aligned}$		Use of $y=r \sin \theta(x=r \cos \theta$ PI) Use of $x^{2}+y^{2}=r^{2}$
	$\Rightarrow r=12 \sin \theta$	A1	4	CSO AG
(b)	$\text { Area }=\frac{1}{2} \int(2 \sin \theta+5)^{2} \mathrm{~d} \theta .$	M1		$\text { Use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$. .=\frac{1}{2} \int_{0}^{2}\left(4 \sin ^{2} \theta+20 \sin \theta+25\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Correct expn. of $(2 \sin \theta+5)^{2}$ Correct limits
	$\begin{aligned} & =\frac{1}{2} \int_{0}^{2 \pi}(2(1-\cos 2 \theta)+20 \sin \theta+25) \mathrm{d} \\ & \theta \\ & =\frac{1}{2}[27 \theta-\sin 2 \theta-20 \cos \theta]_{0}^{2 \pi} \end{aligned}$	M1 A1 \checkmark		Attempt to write $\sin ^{2} \theta$ in terms of $\cos 2 \theta$. Correct integration ft wrong coeffs
	$=27 \pi$.	A1	6	CSO
(c)	At intersection $12 \sin \theta=2 \sin \theta+5$	M1		OE eg $r=6(r-5)$
	$\Rightarrow \sin \theta=\frac{\square}{10}$	A1		OE eg $r=6$
	Points $\left(6, \frac{\pi}{6}\right)$ and $\left(6, \frac{5 \pi}{6}\right)$ $O P M Q$ is a rhombus of side 6	A1		OE Or two equilateral triangles of side 6
	$\text { Area }=6 \times 6 \times \sin \frac{2 \pi}{3} \text { oe }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Any valid complete method to find the area (or half area) of quadrilateral.
	$=18 \sqrt{3}$	A1	6	Accept unsimplified surd
	Total		16	
	Total		75	

Extra notes:

The SC for Q4
$\mathrm{e}^{\sin x}=1+\left(x-\frac{x^{3}}{3!} \ldots\right)+\frac{1}{2!}\left(x-\frac{x^{3}}{3!} \ldots\right)^{2}+\frac{1}{3!}\left(x-\frac{x^{3}}{3!} \ldots\right)^{3} \ldots$

M1 for $1^{\text {st }} 3$ terms ignoring any higher powers than those shown.

A1 for all 4 terms (could be treated separately ie last term often only comes into (b)(ii)
$=1+x-\frac{x^{3}}{6}+\frac{1}{2}\left(x^{2}-\ldots.\right)+\frac{1}{6}\left(x^{3}-\ldots.\right)$
$=1+x+\frac{1}{2} x^{2} \quad$ A1 (be convinced.....ignore any powers of \boldsymbol{x} above power 2)
Coefficient of $x^{3}:-\frac{x^{3}}{6}+\frac{1}{6} x^{3}=0 \quad$ A1 (be convinced.....ignore any powers of x above power 3)
Quite often the $2^{\text {nd }} \mathrm{A}$ mark is awarded before the $1^{\text {st }} \mathrm{A} 1$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous incorrect result	
	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)
(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& y=2 x+\sin 2 x \Rightarrow y^{\prime}=2+2 \cos 2 x \\
& \Rightarrow y^{\prime \prime}=-4 \sin 2 x \\
& -4 \sin 2 x-5(2+2 \cos 2 x)+4(2 x+\sin 2 x)= \\
& 8 x-10-10 \cos 2 x
\end{aligned}
$$

Auxiliary equation $m^{2}-5 m+4=0$ $m=4$ and 1
$$
\text { CF: } A \mathrm{e}^{4 x}+B \mathrm{e}^{x}
$$
$$
\begin{aligned}
& \text { GS: } y=A \mathrm{e}^{4 x}+B \mathrm{e}^{x}+2 x+\sin 2 x \\
& x=0, y=2 \Rightarrow \quad 2=A+B \\
& x=0, y^{\prime}=0 \Rightarrow \quad 0=4 A+B+4
\end{aligned}
$$

Solving the simultaneous equations gives $A=-2$ and $B=4$
$$
y=-2 \mathrm{e}^{4 x}+4 \mathrm{e}^{x}+2 x+\sin 2 x
$$

 \&

M1 A1

A1

M1

A1

M1

B1 $\sqrt{ }$

B1 $\sqrt{ }$

B1 $\sqrt{ }$

M1

A1

 \& 4 \&

Need to attempt both y^{\prime} and $y^{\prime \prime}$

CSO AG Substitute. and confirm correct

Their CF $+2 x+\sin 2 x$

Only ft if exponentials in GS

Only ft if exponentials in GS and differentiated four terms at least
\end{tabular}

\hline \& Total \& \& 11 \&

\hline 2(a)

(b) \& \[
$$
\begin{aligned}
y_{1} & =2+0.1 \times\left[\frac{1^{2}+2^{2}}{1 \times 2}\right] \\
& =2+0.1 \times 2.5=2.25 \\
k_{1} & =0.1 \times 2.5=0.25 \\
k_{2} & =0.1 \times \mathrm{f}(1.1,2.25) \\
\ldots & =0.1 \times 2.53434 \ldots=0.2534(34 \ldots) \\
y(1.1) & =y(1)+\frac{1}{2}[0.25+0.253434 \ldots] \\
& =2.2517 \text { to } 4 \mathrm{dp}
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| A1 |
| M1 |
| A1 \checkmark |
| M1 |
| A1 \checkmark |
| m1 |
| Al \checkmark | \& 3

6 \& | PI ft from (a) |
| :--- |
| PI |
| If answer not to 4 dp withhold this mark |

\hline \& Total \& \& 9 \&

\hline 3(a)

(b) \& $$
\begin{aligned}
& \text { IF is } \mathrm{e}^{\int \cot \mathrm{xdx}} \\
& =\mathrm{e}^{\ln \sin x} \\
& =\sin x \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(y \sin x)=2 \sin x \cos x \\
& y \sin x=\int \sin 2 x \mathrm{~d} x \\
& y \sin x=-\frac{1}{2} \cos 2 x+c \\
& y=2 \text { when } x=\frac{\pi}{2} \Rightarrow \\
& 2 \sin \frac{\pi}{2}=-\frac{1}{2} \cos \pi+c \\
& c=\frac{3}{2} \Rightarrow y \sin x=\frac{1}{2}(3-\cos 2 x)
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { m1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 3

6 \& | AG |
| :--- |
| Method to integrate $2 \sin x \cos x$ |
| OE |
| Depending on at least one M |
| OE eg $y \sin x=\sin ^{2} x+1$ |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\text { Area }=\frac{1}{2} \int 36(1-\cos \theta)^{2} \mathrm{~d} \theta$	M1		$\text { use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$\ldots=\frac{1}{2} \int_{0}^{2 \pi} 36\left(1-2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		for correct explanation of $[6(1-\cos \theta)]^{2}$ for correct limits
	$=9 \int_{0}^{2 \pi} 2-4 \cos \theta+(\cos 2 \theta+1) \mathrm{d} \theta$	M1		Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$.
	$\begin{aligned} & =\left[27 \theta-36 \sin \theta+\frac{9}{2} \sin 2 \theta\right]_{0}^{2 \pi} \\ & =54 \pi \end{aligned}$	A1 \checkmark A1	6	Correct integration; only ft if integrating $a+b \cos \theta+c \cos 2 \theta$ with non-zero a, b, c. CSO
(b)(i)	$x^{2}+y^{2}=9 \Rightarrow r^{2}=9$	B1		PI
	$A \& B: 3=6-6 \cos \theta \Rightarrow \cos \theta=\frac{1}{2}$	M1		
	Pts of intersection $\left(3, \frac{\pi}{3}\right) ;\left(3, \frac{5 \pi}{3}\right)$	$\begin{gathered} \text { A1 } \\ \text { A1 } \checkmark \end{gathered}$	4	OE (accept 'different' values of θ not in the given interval)
(ii)	Length $A B=2 \times r \sin \theta$	M1		
	$\ldots \ldots \ldots \ldots=2 \times 3 \times \frac{\sqrt{3}}{2}=3 \sqrt{3}$	A1	2	OE exact surd form
	Total		12	
5(a)	$\Rightarrow \lim _{a \rightarrow \infty}\left(\frac{3+\frac{2}{a}}{2+\frac{3}{a}}\right)=\frac{3+0}{2+0}=\frac{3}{2}$	M1 A1	2	
(b)	$\int_{1}^{\infty} \frac{3}{(3 x+2)}-\frac{2}{2 x+3} \mathrm{~d} x$			
	$=[\ln (3 x+2)-\ln (2 x+3)]_{1}^{\infty}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$a \ln (3 x+2)+b \ln (2 x+3)$
	$=\left[\ln \left(\frac{3 x+2}{2 x+3}\right)\right]_{1}^{\infty}$	m1		
	$=\ln \left\{\lim _{a \rightarrow \infty}\left(\frac{3 a+2}{2 a+3}\right)\right\}-\ln 1$	M1		
	$=\ln \frac{3}{2}-\ln 1=\ln \frac{3}{2}$	A1	5	CSO
	Total		7	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
1(\mathrm{a})
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& y(1.05)=0.6+0.05 \times[\ln (1+1+0.6)] \\
\& =0.6477(7557 . .)=0.6478 \text { to } 4 \mathrm{dp} \\
\& k_{1}=0.05 \times \ln (1+1+0.6)=0.0477(75 \ldots) \\
\& k_{2}=0.05 \times \mathrm{f}(1.05,0.6477 \ldots) \\
\& \left.\ldots=0.05 \times \ln \left(1+1.05^{2}+0.6477 \ldots\right)\right] \\
\& \ldots=0.0505(85 \ldots) \\
\& y(1.05)=y(1)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\
\& =0.6+0.5 \times 0.09836 \ldots \\
\& =0.6492 \text { to } 4 \mathrm{dp}
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
A1 \\
M1 \\
A1F \\
M1 \\
A1F \\
m1 \\
A1F
\end{tabular} \& 3

6 \& | Condone $>4 \mathrm{dp}$ |
| :--- |
| PI |
| ft candidate's evaluation in (a) |
| PI |
| Dep on previous two Ms and numerical values for k 's |
| Must be $4 \mathrm{dp} . . \mathrm{ft}$ one slip |

\hline \& Total \& \& 9 \&

\hline 2 \& \[
$$
\begin{aligned}
& r-r \sin \theta=4 \\
& r-y=4 \\
& r=y+4 \\
& x^{2}+y^{2}=(y+4)^{2} \\
& x^{2}+y^{2}=y^{2}+8 y+16 \\
& y=\frac{x^{2}-16}{8}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| B1 |
| A1 |
| M1 |
| A1F |
| A1 | \& 6 6 \& $r \sin \theta=y$ stated or used $r^{2}=x^{2}+y^{2}$ used ft one slip

\hline \& Total \& \& 6 \&

\hline | 3(a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& \text { IF is } \exp \left(\int \frac{2}{x} \mathrm{~d} x\right) \\
& =\mathrm{e}^{2 \ln x} \\
& =x^{2} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left[y x^{2}\right]=3 x^{2}\left(x^{3}+1\right)^{\frac{1}{2}} \\
& \Rightarrow y x^{2}=\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}+A \\
& \Rightarrow 4=\frac{2}{3}(9)^{\frac{3}{2}}+A \\
& \Rightarrow A=-14 \\
& \Rightarrow y=x^{-2}\left\{\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}-14\right\}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1A1 |
| m1 |
| A1 |
| m1 |
| A1 | \& 3 \& | And with integration attempted |
| :--- |
| CSO AG be convinced |
| PI $k\left(x^{3}+1\right)^{\frac{3}{2}}$ |
| Condone missing ' A ' |
| Use of boundary conditions to find constant |
| Any correct form |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
4(a)	Integrand is not defined at $x=0$	E1	1	OE
(b)	$\int x^{-\frac{1}{2}} \ln x \mathrm{~d} x=2 x^{\frac{1}{2}} \ln x-\int 2 x^{\frac{1}{2}}\left(\frac{1}{x}\right) \mathrm{d} x$	M1 A1		$\ldots=k x^{\frac{1}{2}} \ln x \pm \int \mathrm{f}(x)$, with $\mathrm{f}(x)$ not involving the 'original' $\ln x$
	$\ldots \ldots=2 x^{\frac{1}{2}} \ln x-4 x^{\frac{1}{2}}(+c)$	A1	3	Condone absence of ' + '
(c)	$\int_{0}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x=\lim _{a \rightarrow 0} \int_{a}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$	M1		
	$=-2 \mathrm{e}^{\frac{1}{2}}-\lim _{a \rightarrow 0}\left[2 a^{\frac{1}{2}} \ln a-4 a^{\frac{1}{2}}\right]$	M1		$\mathrm{F}(b)-\mathrm{F}(a)$
	But $\lim _{a \rightarrow 0} a^{\frac{1}{2}} \ln a=0$	B1		Accept a general form e.g. $\lim _{x \rightarrow 0} x^{k} \ln x=0$
	So $\int_{0}^{\mathrm{e} \ln x} \frac{\mathrm{~d} x}{\sqrt{x}}$ exists and $=-2 \mathrm{e}^{\frac{1}{2}}$	A1	4	
	Total		8	
5	Auxl. eqn $m^{2}-4 m+3=0$	M1		PI
	$m=3$ and 1	A1		PI
	CF is $A \mathrm{e}^{3 x}+B \mathrm{e}^{x}$	A1F		
	PI Try $y=a+b \sin x+c \cos x$	M1		Condone ' a ' missing here
	$y^{\prime}(x)=b \cos x-c \sin x$	A1		
	$y^{\prime \prime}(x)=-b \sin x-c \cos x$	A1F		ft can be consistent sign error(s)
	Substitute into DE gives	M1		
	$a=2$	B1		
	$4 c+2 b=5$ and $2 c-4 b=0$	A1		
	$b=0.5$,	A1F		ft a slip
	$c=1$	AlF		ft a slip
	GS: $y=A \mathrm{e}^{3 x}+B \mathrm{e}^{x}+2+0.5 \sin x+\cos x$	B1F	12	$y=$ candidate's CF and candidate's PI (must have exactly two arbitrary constants)
	Total		12	

Q	Solution	Marks	Total	Comments
7(a)	$\text { Area }=\frac{1}{2} \int(6+4 \cos \theta)^{2} \mathrm{~d} \theta$	M1		$\text { use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$=\frac{1}{2}\left(\int_{-\pi}^{\pi} 36+48 \cos \theta+16 \cos ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		for correct expansion of $[6+4 \cos \theta)]^{2}$ for limits
	$=\left(\int_{-\pi}^{\pi} 18+24 \cos \theta+4(\cos 2 \theta+1)\right) \mathrm{d} \theta$	M1		Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$
	$=[22 \theta+24 \sin \theta+2 \sin 2 \theta]_{-\pi}^{\pi}$	A1F		correct integration ft wrong coefficients
	$=44 \pi$	A1	6	CSO
(b)	$\text { At } P, r=4 ; \quad \text { At } Q, r=2 ;$	B1		PI
	$P\{x=\} r \cos \theta=4 \cos \frac{2 \pi}{3}=-2$	M1		Attempt to use $r \cos \theta$
	$Q\{x=\} r \cos \theta=2 \cos \pi=-2$	A1		Both
	Since P and Q have same ' x ', $P Q$ is vertical so $Q P$ is parallel to the vertical line $\theta=\frac{\pi}{2}$	E1	4	
(c)(i)	$O P=4 ; O S=8 ;$	B1		
	$\text { Angle } P O S=\frac{\pi}{3}$	B1		or $S(4,4 \sqrt{ } 3)$ and $P(-2,2 \sqrt{ } 3)$
	$P S^{2}=4^{2}+8^{2}-2 \times 4 \times 8 \times \cos \frac{\pi}{3} \text { oe }$	M1		Cosine rule used in triangle POS OE $P S^{2}=(4+2)^{2}+(4 \sqrt{3}-2 \sqrt{3})^{2}$
	$P S=\sqrt{48} \quad\{=4 \sqrt{3}\}$	A1	4	
(ii)	Since $8^{2}=4^{2}+(\sqrt{48})^{2}$, $O S^{2}=O P^{2}+P S^{2} \Rightarrow O P S$ is a right angle. (Converse of Pythagoras Theorem)	E1	1	Accept valid equivalents e.g. $\begin{aligned} & P R=2 P Q=2(2 \sqrt{ } 3)=P S \\ & \angle S R P=\angle R S P=\angle R P O=\frac{\pi}{6} \\ & \Rightarrow O P S \text { is a right angle } \end{aligned}$
	Total		15	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3

Further Pure 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& y_{\mathrm{PI}}=k x^{2} \mathrm{e}^{5 x} \Rightarrow y^{\prime}=2 k x \mathrm{e}^{5 x}+5 k x^{2} \mathrm{e}^{5 x} \\
& \Rightarrow y^{\prime \prime}=2 k \mathrm{e}^{5 x}+10 k x \mathrm{e}^{5 x}+10 k x \mathrm{e}^{5 x}+25 k x^{2} \mathrm{e}^{5 x} \\
& \Rightarrow 2 k \mathrm{e}^{5 x}+20 k x \mathrm{e}^{5 x}+25 k x^{2} \mathrm{e}^{5 x} \\
& -10\left(2 k x \mathrm{e}^{5 x}+5 k x^{2} \mathrm{e}^{5 x}\right)+25 k x^{2} \mathrm{e}^{5 x}=6 \mathrm{e}^{5 x}
\end{aligned}
$$
$$
2 k=6 \Rightarrow k=3
$$

Aux. eqn. $m^{2}-10 m+25=0 \Rightarrow m=5$ CF is $(A+B x) \mathrm{e}^{5 x}$

GS $y=(A+B x) \mathrm{e}^{5 x}+3 x^{2} \mathrm{e}^{5 x}$

 \&

M1

A1

A1ft

M1

A1

A1ft

B1

M1

M1

Alft

 \& 4 \&

Product rule to differentiate $x^{2} \mathrm{e}^{5 x}$

Substitution into differential equation

Only ft if $x \mathrm{e}^{5 x}$ and $x^{2} \mathrm{e}^{5 x}$ terms all cancel out

PI

Their CF + their/our PI

ft only on wrong value of k
\end{tabular}

\hline \& Total \& \& 10 \&

\hline 2(a)

(b) \& \[
$$
\begin{aligned}
& y_{1}=2+0.1 \times \sqrt{1^{2}+2^{2}+3} \\
& y(1.1)=2+0.1 \times \sqrt{8} \\
& y(1.1)=2.28284 \ldots=2.2828 \text { to } 4 \mathrm{dp} \\
& k_{1}=0.1 \times \sqrt{8}=0.2828 \\
& k_{2}=0.1 \times \mathrm{f}(1.1,2.2828 \ldots) \\
& \quad=0.1 \times \sqrt{9.42137 \ldots}=0.3069(425 \ldots) \\
& y(1.1)=y(1)+\frac{1}{2}[0.28284 \ldots+0.30694 \ldots] \\
& 2.29489 \ldots=2.2949 \text { to } 4 \mathrm{dp}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1ft |
| M1 |
| A1 |
| m1 |
| A1 | \& 3

6 \& | PI |
| :--- |
| PI |

\hline \& Total \& \& 9 \&

\hline 3 \& $$
\begin{aligned}
& \text { IF if } \mathrm{e}^{\int \tan x \mathrm{dx}} \\
& =\mathrm{e}^{-\ln \cos x}=\mathrm{e}^{\ln \sec x} \\
& =\sec x \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(y \sec x)=\sec ^{2} x \\
& y \sec x=\int \sec ^{2} x \mathrm{~d} x \\
& y \sec x=\tan x+c \\
& y=3 \operatorname{when} x=0 \Rightarrow 3 \sec 0=0+c \\
& c=3 \Rightarrow y \sec x=\tan x+3
\end{aligned}
$$ \& M1

A1
A1ft
M1A1

A1
m1

A1 \& 8 \& | Accept either |
| :--- |
| ft on earlier sign error |
| Condone missing c |
| OE; condone solution finishing at $c=3$ provided no errors |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} (\cos \theta+\sin \theta)^{2} & =\cos ^{2} \theta+\sin ^{2} \theta+2 \cos \theta \sin \theta \\ & =1+\sin 2 \theta \end{aligned}$	B1	1	AG (be convinced)
(b)	$\left(x^{2}+y^{2}\right)^{3}=(x+y)^{4}$			
	$\left(r^{2}\right)^{3}=(r \cos \theta+r \sin \theta)^{4}$	M2,1,0		[M1 for one of $x^{2}+y^{2}=r^{2}$ OE, $x=r \cos \theta, y=r \sin \theta$ used]
	$r^{6}=r^{4}(\cos \theta+\sin \theta)^{4}$			
	$r^{6}=r^{4}(1+\sin 2 \theta)^{2}$	M1		Uses (a) OE at any stage
	$r^{2}=(1+\sin 2 \theta)^{2}$			
	$\Rightarrow r=(1+\sin 2 \theta)\{r \geq 0\}$	A1	4	CSO; AG
(c)(i)	$r=0 \Rightarrow \sin 2 \theta=-1$			
	$2 \theta=\sin ^{-1}(-1) ;=-\frac{\pi}{2}, \frac{3 \pi}{2}$	M1		
	$\theta=-\frac{\pi}{4} ; \frac{3 \pi}{4}$	A1A1ft	3	A1 for either
(ii)	$\text { Area }=\frac{1}{2} \int(1+\sin 2 \theta)^{2} \mathrm{~d} \theta$	M1		$\text { Use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$=\frac{1}{2} \int\left(1+2 \sin 2 \theta+\sin ^{2} 2 \theta\right) \mathrm{d} \theta$	B1		Correct expansion of $(1+\sin 2 \theta)^{2}$
	$=\frac{1}{2} \int\left(1+2 \sin 2 \theta+\frac{1}{2}(1-\cos 4 \theta)\right) \mathrm{d} \theta$	M1		Attempt to write $\sin ^{2} 2 \theta$ in terms of $\cos 4 \theta$
	$=\left[\frac{3}{4} \theta-\frac{1}{2} \cos 2 \theta-\frac{1}{16} \sin 4 \theta\right]$	A1ft		Correct integration ft wrong coefficients only
	$=\left(\frac{9 \pi}{16}\right)-\left(-\frac{3 \pi}{16}\right)$	m1		Using c's values from (c)(i) as limits or the correct limits
	$=\frac{3 \pi}{4}$	A1	6	CSO
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)	$u=\frac{\mathrm{d} y}{\mathrm{~d} x}+x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+1$	M1A1		
	$\left(x^{2}-1\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} x}-1\right)-2 x(u-x)=x^{2}+1$	M1		Substitution into LHS of DE as far as no $y \mathrm{~s}$
	$\mathrm{DE} \Rightarrow\left(x^{2}-1\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x u=0$			
	$\Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2 x u}{x^{2}-1}$	A1	4	CSO; AG
(b)	$\int \frac{1}{u} \mathrm{~d} u=\int \frac{2 x}{x^{2}-1} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Separate variables
	$\ln u=\ln \left\|x^{2}-1\right\|+\ln A$	A1A1		
	$u=A\left(x^{2}-1\right)$	A1	5	
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+x=A\left(x^{2}-1\right)$	M1		Use (b) $(\neq 0)$ to form DE in y and x
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=A\left(x^{2}-1\right)-x$			
	$y=A\left(\frac{x^{3}}{3}-x\right)-\frac{x^{2}}{2}+B$	M1		Solution must have two different constants and correct method used to solve the DE
		A1ft	3	
	Total		12	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{f}(x)=\ln \left(1+\mathrm{e}^{x}\right):$			
	$\mathrm{f}(0)=\ln 2$	B1		
	$\mathrm{f}^{\prime}(x)=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \quad \mathrm{f}^{\prime}(0)=\frac{1}{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule
	$\mathrm{f}^{\prime \prime}(x)=\frac{\left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}=\frac{\mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Quotient rule OE
	$\mathrm{f}^{\prime \prime}(0)=\frac{1}{4}$ so first three terms are: $\mathrm{f}(x)=\ln 2+\frac{1}{2} x+\frac{1}{4} \frac{x^{2}}{2!}=\ln 2+\frac{1}{2} x+\frac{1}{8} x^{2}$	A1	6	CSO; AG
(ii)	$\mathrm{f}^{\prime \prime \prime}(x)=\frac{\left(1+\mathrm{e}^{x}\right)^{2} \mathrm{e}^{x}-\mathrm{e}^{x}\left[2\left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}\right]}{\left(1+\mathrm{e}^{x}\right)^{4}}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$		Chain rule with quotient/product rule ft on $\mathrm{f}^{\prime \prime}(x)=k \mathrm{e}^{x}\left(1+\mathrm{e}^{x}\right)^{n}($ integer $n<0)$
	$\mathrm{f}^{\prime \prime \prime}(0)=\frac{4-4}{2^{4}}=0$ \{so coefficient of x^{3} is zero $\}$	A1	3	CSO; AG; All previous differentiation correct

SC for those not using Maclaurin's theorem: maximum of 4/9
(b) $\frac{1}{2} x+\frac{1}{8} x^{2}$
(c) $\ln \left(1-\frac{x}{2}\right)=$

$$
\left(-\frac{x}{2}\right)-\frac{1}{2}\left(-\frac{x}{2}\right)^{2}+\frac{1}{3}\left(-\frac{x}{2}\right)^{3}-\ldots \ldots
$$

$\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)+\ln \left(1-\frac{x}{2}\right)=-\frac{x^{3}}{24}+\ldots$
$x-\sin x \approx x-\left[x-\frac{x^{3}}{3!}+\ldots\right] \approx \frac{x^{3}}{3!}+\ldots$
$\left[\frac{\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)+\ln \left(1-\frac{x}{2}\right)}{x-\sin x}\right]=\frac{-\frac{1}{24} x^{3}+\ldots}{\frac{1}{6} x^{3}+o\left(x^{5}\right)}$
$=\frac{-\frac{1}{24} x^{3}+\ldots}{x^{3}\left[\frac{1}{6}+o\left(x^{2}\right)\right]}=\frac{-\frac{1}{24}+\ldots}{\frac{1}{6}+o\left(x^{2}\right)}$
$\lim _{x \rightarrow 0} \ldots . .=-\frac{1}{4}$

B1

B1 1

M1

B1

M1
M

Uses previous expansions to obtain first non-zero term of the form $k x^{3}$

MFP3 (cont)

General Certificate of Education

Mathematics 6360

MFP3
Further Pure 3

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	C	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& y(2.1)=y(2)+0.1\left[2^{2}-1^{2}\right] \\
\& \quad=1+0.1 \times 3=1.3 \\
\& y(2.2)=y(2)+2(0.1)[f(2.1, y(2.1))] \\
\& \ldots .=1+2(0.1)\left[2.1^{2}-1.3^{2}\right] \\
\& \ldots .=1+0.2 \times 2.72=1.544
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
A1 \\
M1 \\
A1 \(\sqrt{ }\) \\
A1
\end{tabular} \& 3

3 \& Ft on cand's answer to (a) CAO

\hline \& Total \& \& 6 \&

\hline 2(a) \& \[
$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \int(1+\tan \theta)^{2} \mathrm{~d} \theta \\
& \ldots .=\frac{1}{2} \int\left(1+2 \tan \theta+\tan ^{2} \theta\right) \mathrm{d} \theta \\
& =\frac{1}{2} \int\left(\sec ^{2} \theta+2 \tan \theta\right) \mathrm{d} \theta \\
& =\frac{1}{2}[\tan \theta+2 \ln (\sec \theta)]^{\frac{\pi}{3}} \\
& =\frac{1}{2}[(\sqrt{3}+2 \ln 2)-0]=\frac{\sqrt{3}}{2}+\ln 2 \\
& O P=1 ; O Q=1+\tan \frac{\pi}{3} \\
& \text { Shaded area }= \\
& \text { 'answer }(\mathrm{a})^{\prime}-\frac{1}{2} O P \times O Q \times \sin \left(\frac{\pi}{3}\right) \\
& =\frac{\sqrt{3}}{2}+\ln 2-\frac{\sqrt{3}}{4}(1+\sqrt{3}) \\
& =\frac{\sqrt{3}}{4}+\ln 2-\frac{3}{4}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| B1 |
| M1 |
| A1 $\sqrt{ }$ |
| B1 \checkmark |
| A1 |
| B1 |
| M1 |
| A1 | \& 6 \& | Use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$ |
| :--- |
| Correct expansion of $(1+\tan \theta)^{2}$ $1+\tan ^{2} \theta=\sec ^{2} \theta \text { used }$ |
| Integrating $p \sec ^{2} \theta$ correctly Integrating $q \tan \theta$ correctly |
| Completion. AG CSO be convinced |
| Both needed. Accept 2.73 for $O Q$ |
| ACF. Condone $0.376 \ldots$ if exact 'value' for area of triangle seen |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MFP3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 5 \& IF is \(\mathrm{e}^{\int \frac{4 x}{x^{2}+1} \mathrm{~d} x}\)
\[
\begin{aligned}
\& =\mathrm{e}^{2 \ln \left(x^{2}+1\right)} \\
\& =\mathrm{e}^{\ln \left(x^{2}+1\right) 2}=\left(x^{2}+1\right)^{2} \\
\& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y\left(x^{2}+1\right)^{2}\right)=x\left(x^{2}+1\right)^{2} \\
\& y\left(x^{2}+1\right)^{2}=\int x\left(x^{2}+1\right)^{2} \mathrm{~d} x \\
\& y\left(x^{2}+1\right)^{2}=\frac{1}{6}\left(x^{2}+1\right)^{3}+c \\
\& y(0)=1 \Rightarrow c=\frac{5}{6} \\
\& y=\frac{1}{6}\left(x^{2}+1\right)+\frac{5}{6\left(x^{2}+1\right)^{2}}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \(\sqrt{ }\) \\
M1 \\
A1 \(\sqrt{ }\) \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 9 \& \begin{tabular}{l}
Ft on \(\mathrm{e}^{p \ln \left(x^{2}+1\right)}\) \\
LHS as \(\mathrm{d} / \mathrm{d} x(y \times\) cand's IF) PI and also RHS of form \(k x\left(x^{2}+1\right)^{p}\) \\
Use of suitable substitution to find RHS or reaching \(k\left(x^{2}+1\right)^{3} \mathrm{OE}\) Condone missing \(c\) \\
Accept other forms of \(\mathrm{f}(x)\) eg \(y=\frac{\left(\frac{x^{6}}{6}+\frac{2 x^{4}}{4}+\frac{x^{2}}{2}+1\right)}{\left(x^{2}+1\right)^{2}}\)
\end{tabular} \\
\hline \& Total \& \& 9 \& \\
\hline \begin{tabular}{l}
6(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& r^{2} 2 \sin \theta \cos \theta=8 \\
\& x=r \cos \theta \quad y=r \sin \theta \\
\& x y=4, \quad y=\frac{4}{x}
\end{aligned}
\]
 \\
\(r=2 \sec \theta\) is \(x=2\) \\
Sub \(x=2\) in \(x y=4 \Rightarrow 2 y=4\) \\
In cartesian, \(A(2,2)\)
\[
\begin{aligned}
\& \Rightarrow \tan \theta=\frac{y}{x}=1 \Rightarrow \theta=\frac{\pi}{4} \\
\& \Rightarrow r=\sqrt{x^{2}+y^{2}}=\sqrt{8} \\
\& \theta=\frac{\pi}{4} ; r=\sqrt{8}
\end{aligned}
\] \\
Altn2: Eliminating \(r\) to reach eqn. in \(\cos \theta\) and \(\sin \theta\) only (M1) \(\quad \theta=\frac{\pi}{4}\) \\
Substitution \(r=2 \sec \left(\frac{\pi}{4}\right) \quad\) (m1) \\
\(r=\sqrt{8} \quad\) (A1) OE surd
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 3
1

4 \& | $\sin 2 \theta=2 \sin \theta \cos \theta$ used |
| :--- |
| Either one stated or used |
| Either OE eg $y=\frac{8}{2 x}$ |
| Used either $\tan \theta=\frac{y}{x}$ or $r=\sqrt{x^{2}+y^{2}}$ |
| r must be given in surd form |
| Altn3: $r \sin \theta=2$ (B1) |
| Solving $r \cos \theta=2$ and $r \sin \theta=2$ |
| simultaneously (M1) |
| $\tan \theta=1$ or $r^{2}=2^{2}+2^{2}$ (M1) |
| $\theta=\frac{\pi}{4} ; r=\sqrt{8}$ (A1) need both |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.
COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& k_{1}=0.1 \times \ln (2+3) \\
\&=0.1609(4379 \ldots) \quad(=*) \\
\& k_{2}=0.1 \times \mathrm{f}(2.1,3+* \ldots) \\
\& \ldots=0.1 \times \ln (2.1+3.16094 \ldots)] \\
\& \ldots=0.1660(31 \ldots) \\
\& y(2.1)=y(2)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\
\& \quad=3+0.5 \times 0.3269748 \ldots \\
\&= 3.163487 \ldots=3.1635 \text { to } 4 \mathrm{dp}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 6 \& \begin{tabular}{l}
PI \\
PI \\
Dep on previous two Ms and numerical values for \(k\) 's \\
Must be 3.1635
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 2(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { PI: } \begin{array}{l}
y_{P I}=a+b x+c \sin x+d \cos x \\
\begin{array}{r}
y_{P I}^{\prime}=b+c \cos x-d \sin x \\
b+c \cos x-d \sin x-3 a-3 b x-3 c \sin x \\
\\
\\
\quad-3 d \cos x=10 \sin x-3 x
\end{array} \\
\begin{array}{l}
b-3 a=0 ;-3 b=-3 ; c-3 d=0 ;-d-3 c=10 \\
a=\frac{1}{3} ; b=1 ; c=-3 ; d=-1
\end{array} \\
y_{P I}=\frac{1}{3}+x-3 \sin x-\cos x
\end{array}
\end{aligned}
\] \\
Aux. eqn. \(m-3=0\)
\[
\begin{aligned}
\& \left(y_{C F}=\right) A \mathrm{e}^{3 x} \\
\& \left(y_{G S}=\right) A \mathrm{e}^{3 x}+\frac{1}{3}+x-3 \sin x-\cos x
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A2,1 \\
M1 \\
A1 \\
B1F
\end{tabular} \& 4

3 \& | Substituting into DE |
| :--- |
| Equating coefficients (at least 2 eqns) |
| A1 for any two correct |
| Altn. $\int y^{-1} \mathrm{~d} y=\int 3 \mathrm{~d} x \quad$ OE (M1) $A e^{3 x} \mathrm{OE}$ |
| (c's CF + c's PI) with 1 arbitrary constant |

\hline \& Total \& \& 7 \&

\hline | 3(a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=1-2 y+y^{2} \Rightarrow x^{2}+y^{2}=(1-y)^{2} \\
x^{2}+y^{2}=r^{2} \\
y=r \sin \theta \\
x^{2}=1-2 y \text { so } x^{2}+y^{2}=(1-y)^{2} \\
\quad \Rightarrow r^{2}=(1-r \sin \theta)^{2} \\
r=1-r \sin \theta \text { or } r=-(1-r \sin \theta) \\
r(1+\sin \theta)=1 \text { or } r(1-\sin \theta)=-1 \\
r>0 \text { so } r=\frac{1}{1+\sin \theta}
\end{array}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| M1 |
| A1 |
| m1 |
| A1 | \& 1

5 \& | AG |
| :--- |
| Or $x=r \cos \theta$ |
| OE eg $r^{2} \cos ^{2} \theta=1-2 r \sin \theta$ PI by the next line |
| Either |
| CSO |

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & u=\frac{\mathrm{d} y}{\mathrm{~d} x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \\ & x \frac{\mathrm{~d} u}{\mathrm{~d} x}-u=3 x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}-\frac{1}{x} u=3 x \end{aligned}$	M1 A1	2	AG Substitution into LHS of DE and completion
(b)	IF is $\exp \left(\int-\frac{1}{x} \mathrm{~d} x\right)$	M1		and with integration attempted
	$=\mathrm{e}^{-\ln x}$	A1		
	$=x^{-1} \text { or } \frac{1}{x}$	A1		or multiple of x^{-1}
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[u x^{-1}\right]=3$	M1		LHS as differential of $u \times \mathrm{IF}$. PI
	$\Rightarrow u x^{-1}=3 x+A$	m1		Must have an arbitrary constant (Dep. on previous M1 only)
	$u=3 x^{2}+A x$	A1	6	
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+A x$	M1		Replaces u by $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and attempts to integrate
	$y=x^{3}+\frac{A x^{2}}{2}+B$	A1F	2	ft on cand's u but solution must have two arbitrary constants
	Total		10	
5(a)	$\int x^{3} \ln x \mathrm{~d} x=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4}\left(\frac{1}{x}\right) \mathrm{d} x$	M1		$\ldots=k x^{4} \ln x \pm \int \mathrm{f}(x)$, with $\mathrm{f}(x)$ not involving the 'original' $\ln x$
		A1		
	$\ldots \ldots=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+c$	A1	3	Condone absence of ' $+c$ '
(b)	Integrand is not defined at $x=0$	E1	1	OE
(c)	$\int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x=\left\{\lim _{a \rightarrow 0} \int_{a}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x\right\}$			
	$=\frac{3 \mathrm{e}^{4}}{16}-\lim _{a \rightarrow 0}\left[\frac{a^{4}}{4} \ln a-\frac{a^{4}}{16}\right]$	M1		$\mathrm{F}(\mathrm{e})-\mathrm{F}(a)$
	But $\lim _{a \rightarrow 0} a^{4} \ln a=0$	B1		Accept a general form eg $\lim _{x \rightarrow 0} x^{k} \ln x=0$
	So $\int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x$ exists and $=\frac{3 \mathrm{e}^{4}}{16}$	A1	3	CSO
	Total		7	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Aux eqn: $m^{2}-2 m-3=0$	M1		
	$m=-1,3$	A1		PI
	CF ($\left.y_{C}=\right) A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}$	M1		
	Try ($\left.y_{P I}=\right) a \mathrm{e}^{-2 x}(+b)$	M1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 a \mathrm{e}^{-2 x}$	A1		
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 a \mathrm{e}^{-2 x}$	A1		
	Substitute into DE gives $4 a \mathrm{e}^{-2 x}+4 a \mathrm{e}^{-2 x}-3 a \mathrm{e}^{-2 x}-3 b=10 \mathrm{e}^{-2 x}-9$	M1		
	$\Rightarrow a=2$	A1		
	$b=3$	B1		
	$\left(y_{G S}=\right) A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}+2 \mathrm{e}^{-2 x}+3$	B1F	10	(c's CF+c's PI) with 2 arbitrary constants
(b)	$x=0, y=7 \Rightarrow 7=A+B+2+3$	B1F		Only ft if exponentials in GS and two arbitrary constants remain
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 A \mathrm{e}^{3 x}-B \mathrm{e}^{-x}-4 \mathrm{e}^{-2 x}$			
	$\text { As } x \rightarrow \infty, \mathrm{e}^{-k x} \rightarrow 0, \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 0 \text { so } A=0$	B1		
	$\begin{aligned} & \text { When } A=0,5=0+B+3 \Rightarrow B=2 \\ & y=2 \mathrm{e}^{-x}+2 \mathrm{e}^{-2 x}+3 \end{aligned}$	$\begin{gathered} \text { B1F } \\ \text { A1 } \end{gathered}$	4	Must be using ' A ' $=0$ CSO
	Total		14	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\sin 2 x \approx 2 x-\frac{(2 x)^{3}}{3!}+. .=2 x-\frac{4}{3} x^{3}+. .$	B1	1	
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(3+\mathrm{e}^{x}\right)^{-\frac{1}{2}}\left(\mathrm{e}^{x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} \mathrm{e}^{x}\left(3+\mathrm{e}^{x}\right)^{-\frac{1}{2}}-\frac{1}{4}\left(3+\mathrm{e}^{x}\right)^{-\frac{3}{2}}\left(\mathrm{e}^{2 x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Product rule OE OE
	$y^{\prime}(0)=\frac{1}{4} ; y^{\prime \prime}(0)=\frac{1}{4}-\frac{1}{32}=\frac{7}{32}$	A1	5	CSO
(ii)	$\begin{aligned} & y(0)=2 ; y^{\prime}(0)=\frac{1}{4} ; y^{\prime \prime}(0)=\frac{1}{4}-\frac{1}{32}=\frac{7}{32} \\ & \text { McC. Thm: } y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0) \\ & \sqrt{3+\mathrm{e}^{x}} \approx 2+\frac{1}{4} x+\frac{7}{64} x^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	CSO; AG
(c)	$\begin{aligned} & {\left[\frac{\sqrt{3+\mathrm{e}^{x}}-2}{\sin 2 x}\right]=\left[\frac{2+\frac{1}{4} x+\frac{7}{64} x^{2}-2}{2 x-\frac{4}{3} x^{3}}\right]} \\ & =\left[\frac{\frac{1}{4}+\frac{7}{64} x+\ldots}{2-\frac{4}{3} x^{2}+. .}\right] \end{aligned}$	M1 m1		Dividing numerator and denominator by x to get constant term in each
	$\lim _{x \rightarrow 0}\left[\frac{\sqrt{3+\mathrm{e}^{x}}-2}{\sin 2 x}\right]=\frac{\frac{1}{4}}{2}=\frac{1}{8}$	A1F	3	Ft on cand's answer to (a) provided of the form $a x+b x^{3}$
	Total		11	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\theta=0, r=5+2 \cos 0=7\{A$ lies on $C\}$	B1		
(b)	$\theta=\pi, r=5+2 \cos \pi=3\{B$ lies on $C\}$	B1	2	
		B1		Closed single loop curve, with (indication of) symmetry
		B1	2	Critical values, 3,5,7 indicated
(c)	$\text { Area }=\frac{1}{2} \int(5+2 \cos \theta)^{2} \mathrm{~d} \theta$	M1		Use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$=\frac{1}{2} \int_{-\pi}^{\pi}\left(25+20 \cos \theta+4 \cos ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		OE for correct expansion of $(5+2 \cos \theta)^{2}$ For correct limits
	$=\frac{1}{2} \int_{-\pi}^{\pi}(25+20 \cos \theta+2(\cos 2 \theta+1)) \mathrm{d} \theta$	M1		Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$
	$=\frac{1}{2}[27 \theta+20 \sin \theta+\sin 2 \theta]_{-\pi}^{\pi}$	A1F		Correct integration ft wrong non-zero coefficients in $a+b \cos \theta+c \cos 2 \theta$
	$=27 \pi$	A1	6	CSO
(d)	Triangle $O B Q$ with $O B=3$ and angle $B O Q=\alpha$	B1		PI
	$O Q=5+2 \cos (-\pi+\alpha)$	M1		OE
	Area of triangle $O Q B=\frac{1}{2} O B \times O Q \sin \alpha$	m1		Dep. on correct method to find $O Q$
	$=\frac{3}{2}(5-2 \cos \alpha) \sin \alpha$	A1	4	CSO
	Total		14	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme
2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} y_{1} & =3+0.2 \times\left[\frac{1^{2}+3^{2}}{1+3}\right] \\ & =3.5 \\ k_{1} & =0.2 \times 2.5=0.5 \\ k_{2} & =0.2 \times \mathrm{f}(1.2,3.5) \\ \ldots & =0.2 \times \frac{1.2^{2}+3.5^{2}}{1.2+3.5}=0.5825(53 \ldots) \\ y(1.2) & =y(1)+\frac{1}{2}[0.5+0.5825(53 \ldots)] \\ & =3.54127 \ldots=3.5413 \text { to } 4 \mathrm{dp} \end{aligned}$	M1A1 A1 B1ft M1 A1ft m1 A1ft	5	PI ft from (a) ft on (a) PI condone 3dp ft one slip If answer not to 4 dp withhold this mark
	Total		8	
2(a) (b)	$\begin{aligned} & \text { IF is } \mathrm{e}^{\int-\frac{2}{x} \mathrm{~d} x} \\ & =\mathrm{e}^{-2 \ln x} \\ & =\mathrm{e}^{\ln x^{-2}}=x^{-2}=\frac{1}{x^{2}} \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right)=\frac{1}{x^{2}} x \\ & \frac{y}{x^{2}}=\int \frac{1}{x} \mathrm{~d} x=\ln x+c \\ & y=x^{2} \ln x+c x^{2} \end{aligned}$	M1 A1 A1 M1 A1 A1 A1	3 4	$\begin{aligned} & \mathrm{e}^{\int \pm^{\frac{2}{x}} \mathrm{dx}} \\ & \text { P1 } \\ & \text { AG Be convinced } \\ & \text { LHS as } \mathrm{d} / \mathrm{d} x(y \times \text { IF }) \\ & \text { PI } \\ & \text { RHS Condone missing ‘+ } \mathrm{c}^{\prime} \text { here } \end{aligned}$
	Total		7	
3	$\begin{aligned} & \text { Area }=\frac{1}{2} \int_{0}^{\pi}(2+\cos \theta)^{2} \sin \theta \mathrm{~d} \theta \\ & =\frac{1}{2}\left[-\frac{1}{3}(2+\cos \theta)^{3}\right]_{0}^{\pi} \end{aligned}$ $=\frac{1}{2}\left\{-\frac{1}{3}+\frac{1}{3} \times 3^{3}\right\}=\frac{13}{3}$	M1 B1 M2 A1 A1	6	use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$ Correct limits Valid method to reach $k(2+\cos \theta)^{3}$ or $a \cos \theta+b \cos 2 \theta+c \cos ^{3} \theta$ OE \{SC: M1 if expands then integrates to get either $a \cos \theta+b \cos 2 \theta$ OE or $c \cos ^{3} \theta$ OE in a valid way\} OE eg $-4 \cos \theta-\cos 2 \theta-\frac{1}{3} \cos ^{3} \theta$ CSO
	Total		6	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 4(a)
(b) \& \[
\begin{aligned}
\& \begin{array}{l}
\int \ln x \mathrm{~d} x=x \ln x-\int x\left(\frac{1}{x}\right) \mathrm{d} x \\
\quad=x \ln x-x+c
\end{array} \\
\& \int_{0}^{1} \ln x \mathrm{~d} x=\lim _{a \rightarrow 0} \int_{a}^{1} \ln x \mathrm{~d} x \\
\& =\lim _{a \rightarrow 0}\{0-1-[a \ln a-a]\} \\
\& \text { But } \lim _{a \rightarrow 0} a \ln a=0 \\
\& \text { So } \int_{0}^{1} \ln x \mathrm{~d} x=-1
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
E1 \\
A1
\end{tabular} \& 2

4 \& | Integration by parts |
| :--- |
| CSO AG |
| OE $\mathrm{F}(1)-\mathrm{F}(a) \quad \mathrm{OE}$ |
| Accept a general form eg $\lim _{a \rightarrow 0} a^{k} \ln a=0$ |

\hline \& Total \& \& 6 \&

\hline 5(a) \& When $\theta=\pi$,

$$
r=\frac{2}{3+2 \cos \pi}=\frac{2}{3+2(-1)}=2
$$ \& B1 \& 1 \& Correct verification

\hline (b)(i) \& | $\frac{2}{3+2 \cos \theta}=1 \Rightarrow \cos \theta=-\frac{1}{2}$ |
| :--- |
| Points of intersection $\left(1, \frac{2 \pi}{3}\right),\left(1, \frac{4 \pi}{3}\right)$ | \& | M1 |
| :--- |
| A2,1 | \& 3 \& | Equates r 's and attempts to solve. |
| :--- |
| Condone eg $-2 \pi / 3$ for $4 \pi / 3$ A1 if either one point correct or two correct solutions of $\cos \theta=-0.5$ |

\hline (ii) \& \[
$$
\begin{aligned}
& \text { Area } O M N=\frac{1}{2} \times 1 \times 1 \times \sin \left(\left|\theta_{M}-\theta_{N}\right|\right) \\
& \quad=\frac{1}{2} \sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{4}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& \& \[

$$
\begin{aligned}
& \underline{\text { ALT }} M N=2 \times 1 \times \sin \frac{\pi}{3} \quad \text { M1 } \\
& \text { Perp. from } L \text { to } M N \\
& \\
& =2-1 \cos \frac{\pi}{3}=\frac{3}{2} \quad \text { M1A1 }
\end{aligned}
$$
\]

\hline \& \[
$$
\begin{aligned}
& \text { Area } O M L N=2 \times \frac{1}{2} \times 1 \times 2 \times \sin \frac{\pi}{3} \\
& \text { Area } L M N=\sqrt{3}-\frac{\sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& 4 \& Area $L M N=\frac{1}{2} \times \sqrt{3} \times \frac{3}{2}=\frac{3 \sqrt{3}}{4} \quad$ A1

\hline (c) \& \[
$$
\begin{aligned}
& 3 r+2 r \cos \theta=2 \\
& 3 r+2 x=2 \\
& 3 r=2-2 x \\
& 9\left(x^{2}+y^{2}\right)=(2-2 x)^{2} \\
& 9 y^{2}=(2-2 x)^{2}-9 x^{2}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| B1 |
| A1 |
| M1 |
| A1 | \& 5 \& | $\begin{aligned} & r \cos \theta=x \text { stated or used } \\ & 3 r= \pm(2-2 x) \\ & r^{2}=x^{2}+y^{2} \text { used } \end{aligned}$ |
| :--- |
| CSO |
| ACF for $\mathrm{f}(x)$ eg $9 y^{2}=-5 x^{2}-8 x+4$ |

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

MFP3 (cont)

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^1]
Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} y(3.1)= & y(3)+0.1 \sqrt{3^{2}+2+1} \\ =2+0.1 \times \sqrt{12} & =2.3464(10 . .) \\ & =2.3464 \end{aligned}$ $\begin{aligned} & y(3.2)=y(3)+2(0.1)[f(3.1, y(3.1))] \\ & \ldots=2+2(0.1)\left[\sqrt{\left(3.1^{2}+2.3464+1\right)}\right] \\ & \\ & \ldots=2+0.2 \times 3.599499 . .=2.719(89 . .) \\ & =2.720 \end{aligned}$	M1A1 A1 M1 A1F A1	3	Condone > 4dp if correct ft on candidate's answer to (a) CAO Must be 2.720
	Total		6	
2	$\begin{aligned} & \text { IF is } \mathrm{e}^{\int-\tan x \mathrm{dx}} \\ & =\mathrm{e}^{\ln (\cos x)(+c)} \\ & =(k) \cos x \\ & \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \tan x \cos x=2 \sin x \cos x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}(y \cos x)=2 \sin x \cos x \\ & y \cos x=\int 2 \sin x \cos x \mathrm{~d} x \mathrm{~d} x \\ & y \cos x=\int \sin 2 x \mathrm{~d} x \\ & y \cos x=-\frac{1}{2} \cos 2 x(+c) \\ & 2=-\frac{1}{2}+c \\ & c=\frac{5}{2} \\ & y \cos x=-\frac{1}{2} \cos 2 x+\frac{5}{2} \end{aligned}$	M1 A1 A1F M1 A1F m1 A1 m1 A1	(1090 9	Award even if negative sign missing OE Condone missing c ft earlier sign error $\text { LHS as } \frac{\mathrm{d}}{\mathrm{~d} x}(y \times \mathrm{IF}) \quad \text { PI }$ ft on c's IF provided no exp or logs Double angle or substitution OE for integrating $2 \sin x \cos x$ ACF Boundary condition used to find c ACF eg $y \cos x-2+\sin ^{2} x$ Apply ISW after ACF
	Total		9	

MFP3 (cont)

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4	$\begin{aligned} & \int\left(\frac{1}{x}-\frac{4}{4 x+1}\right) \mathrm{d} x=\ln x-\ln (4 x+1)\{+c\} \\ & \mathrm{I}=\lim _{a \rightarrow \infty} \int_{1}^{a}\left(\frac{1}{x}-\frac{4}{4 x+1}\right) \mathrm{d} x \\ & =\lim _{a \rightarrow \infty}[\ln x-\ln (4 x+1)]_{1}^{a} \\ & =\lim _{a \rightarrow \infty}\left[\ln \left(\frac{a}{4 a+1}\right)-\ln \frac{1}{5}\right] \\ & =\lim _{a \rightarrow \infty}\left[\ln \left(\frac{1}{4+\frac{1}{a}}\right)-\ln \frac{1}{5}\right] \\ & =\ln \frac{1}{4}-\ln \frac{1}{5}=\ln \frac{5}{4} \end{aligned}$	B1 M1 m1 m1 A1	5	OE ∞ replaced by a (OE) and $\lim _{a \rightarrow \infty}$ $\ln a-\ln (4 a+1)=\ln \left(\frac{a}{4 a+1}\right)$ and previous M1 scored $\ln \left(\frac{a}{4 a+1}\right)=\ln \left(\frac{1}{4+\frac{1}{a}}\right)$ and previous M1m1 scored CSO
	Total		5	
$5(\mathbf{a})$ (b)	$-k \sin x+2 k \cos x+5 k \sin x=8 \sin x+4 \cos x$ $k=2$ Auxl eqn $m^{2}+2 m+5=0$ $\begin{aligned} & m=\frac{-2 \pm \sqrt{4-20}}{2} \\ & m=-1 \pm 2 \mathrm{i} \\ & \text { CF: }\left\{y_{C}\right\}=\mathrm{e}^{-x}(A \sin 2 x+B \cos 2 x) \\ & \text { GS }\{y\}=\mathrm{e}^{-x}(A \sin 2 x+B \cos 2 x)+k \sin x \\ & \text { When } x=0, y=1 \Rightarrow B=1 \\ & \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x}= & -\mathrm{e}^{-x}(A \sin 2 x+B \cos 2 x) \\ & \quad+\mathrm{e}^{-x}(2 A \cos 2 x-2 B \sin 2 x)+k \cos x \end{aligned} \end{aligned}$ When $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \Rightarrow 4=-B+2 A+k$ $\begin{aligned} & \Rightarrow A=\frac{3}{2} \\ & y=\mathrm{e}^{-x}\left(\frac{3}{2} \sin 2 x+\cos 2 x\right)+2 \sin x \end{aligned}$	M1 A1 A1 M1 A1 A1F B1F B1F M1 A1 A1	8	Differentiation and subst. into DE Formula or completing sq. PI ft provided m is not real ft on $\mathrm{CF}+\mathrm{PI}$; must have 2 arb consts Product rule PI CSO
	Total		11	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{f}(x)=(9+\tan x)^{\frac{1}{2}}$		4	Chain rule
(a)(ii)	$\begin{aligned} & \text { so } \mathrm{f}^{\prime}(x)=\frac{1}{2}(9+\tan x)^{-\frac{1}{2}} \sec ^{2} x \\ & \mathrm{f}^{\prime \prime}(x)=-\frac{1}{4}(9+\tan x)^{-\frac{3}{2}} \sec ^{4} x \\ & \\ & \\ & \quad+\frac{1}{2}(9+\tan x)^{-\frac{1}{2}}\left(2 \sec ^{2} x \tan x\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		
		M1 A1		ACF
	$\begin{aligned} & \mathrm{f}(0)=3 \\ & \mathrm{f}^{\prime}(0)=\frac{1}{2}(9)^{-\frac{1}{2}}=\frac{1}{6} ; \end{aligned}$	B1		
	$\begin{aligned} & \mathrm{f}^{\prime \prime}(0)=-\frac{1}{4}(9)^{-\frac{3}{2}}=-\frac{1}{108} \\ & \mathrm{f}(x) \approx \mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{1}{2} x^{2} \mathrm{f}^{\prime \prime}(0) \end{aligned}$	M1		Both attempted and at least one correct ft on C's $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$
	$(9+\tan x)^{\frac{1}{2}} \approx 3+\frac{x}{6}-\frac{x^{2}}{216}$	A1	3	CSO AG
(b)	$\frac{\mathrm{f}(x)-3}{\sin 3 x} \approx \frac{\frac{x}{6}-\frac{x^{2}}{216} \ldots}{3 x-\frac{(3 x)^{3}}{2} \ldots}$	M1		Using series expns.
	$\approx \frac{\frac{1}{6}-\frac{x}{216} \ldots}{3-\ldots}$	m1		Dividing numerator and denominator by x to get constant term in each
	$\lim _{x \rightarrow 0}\left[\frac{f(x)-3}{\sin 3 x}\right]=\frac{1}{18}$	A1	3	
	Total		10	

MFP3 (cont)

General Certificate of Education

Mathematics 6360

MFP3
Further Pure 3

Mark Scheme
2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & \hline y_{1}=2+0.1 \times[3 \ln (2 \times 3+2)]=2+0.3 \ln 8 \\ &=2.6238(3 . . .) \\ & y(3.1)=2.6238 \text { (to } 4 \mathrm{dp}) \\ & k_{1}=0.1 \times 3 \ln 8=0.6238(32 \ldots) \\ & k_{2}= 0.1 \times f(3.1,2.6238(32 \ldots)) \\ & \ldots=0.1 \times 3.1 \times \ln 8.8238(32 . .) \\ & {[=0.6750(1 \ldots)} \\ & y(3.1)=2+\frac{1}{2}[0.6238(3 . .)+0.6750(1 . .)] \\ &=2.6494(2 \ldots)=2.6494 \text { to } 4 \mathrm{dp} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { B1F } \\ \text { M1 } \\ \text { A1F } \\ \\ \text { m1 } \\ \text { A1 } \\ \hline \end{gathered}$	3	Condone greater accuracy PI ft from (a), 4dp or better PI; ft on $0.1 \times 3.1 \times \ln [6.2+$ answer(a)] CAO Must be 2.6494
	Total		8	
2(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4+3 x} \times 3 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-3(4+3 x)^{-2} \times 3=-9(4+3 x)^{-2} \end{aligned}$	M1 M1A1	3	Chain rule M1 for quotient (PI) or chain rule used
(b)	$\begin{aligned} & \ln (4+3 x)=\ln 4+y^{\prime}(0) x+y^{\prime \prime}(0) \frac{1}{2} x^{2}+. . \\ & \text { First three terms: } \quad \ln 4+\frac{3}{4} x-\frac{9}{32} x^{2} \end{aligned}$	M1 A1F	2	Clear attempt to use Maclaurin's theorem with numerical values for $y^{\prime}(0)$ and $y^{\prime \prime}(0)$ ft on c's answers to (a) provided $y^{\prime}(0)$ and $y^{\prime \prime}(0)$ are $\neq 0$. Accept 1.38(6..) for $\ln 4$
(c)	$\ln (4-3 x)=\ln 4-\frac{3}{4} x-\frac{9}{32} x^{2}$	B1F	1	ft $x \rightarrow-x$ in c's answer to (b)
(d)	$\begin{aligned} & \ln \left(\frac{4+3 x}{4-3 x}\right)=\ln (4+3 x)-\ln (4-3 x) \\ & \approx \ln 4+\frac{3}{4} x-\frac{9}{32} x^{2}-\ln 4+\frac{3}{4} x+\frac{9}{32} x^{2} \\ & \approx \frac{3}{2} x \end{aligned}$	M1 A1	2	CSO AG
	Total		8	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & y_{\mathrm{PI}}=p x \mathrm{e}^{-2 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=p \mathrm{e}^{-2 x}-2 p x \mathrm{e}^{-2 x} \\ & \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-2 p \mathrm{e}^{-2 x}-2 p \mathrm{e}^{-2 x}+4 p x \mathrm{e}^{-2 x} \\ & -4 p \mathrm{e}^{-2 x}+4 p x \mathrm{e}^{-2 x}+3 p \mathrm{e}^{-2 x}-6 p x \mathrm{e}^{-2 x}+ \\ & 2 p x \mathrm{e}^{-2 x}=2 \mathrm{e}^{-2 x} \\ & -p \mathrm{e}^{-2 x}=2 \mathrm{e}^{-2 x} \Rightarrow p=-2 \end{aligned}$	M1 A1 M1 A1F	4	Product Rule used Sub. into DE ft one slip in differentiation
5(b)	Aux. eqn. $m^{2}+3 m+2=0$ $\Rightarrow \quad m=-1,-2$ CF is $A e^{-x}+B \mathrm{e}^{-2 x}$	B1 M1		ft on real values of m only
	GS $y=A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}$. When $x=0, y=2 \Rightarrow A+B=2$	B1F B1F		Their CF + their PI must have 2 arb consts Must be using GS; ft on wrong nonzero values for p and m
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-A \mathrm{e}^{-x}-2 B \mathrm{e}^{-2 x}-2 \mathrm{e}^{-2 x}+4 x \mathrm{e}^{-2 x}$	B1F		Must be using GS; ft on wrong nonzero values for p and m
	When $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow-A-2 B-2=0$	B1F		Must be using GS; ft on wrong nonzero values for p and m and slips in finding $y^{\prime}(x)$
	Solving simultaneously, 2 eqns each in two arbitrary constants $A=6, B=-4 ; \quad y=6 \mathrm{e}^{-x}-4 \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} .$	m1 A1	8	CSO
	Total		12	

MFP3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline $$
\begin{array}{r}
\text { 6(a) } \\
\text { (b)(i) }
\end{array}
$$ \& The interval of integration is infinite
$$
\begin{aligned}
& x=\frac{1}{y} \Rightarrow ' \mathrm{~d} x=-y^{-2} \mathrm{~d} y \\
& \int \frac{\ln x^{2}}{x^{3}} \mathrm{~d} x \Rightarrow \int\left(y^{3} \ln y^{-2}\right)\left(-y^{-2}\right) \mathrm{d} y
\end{aligned}
$$ \& E1

M1 \& 1 \& OE

\hline \& $$
=\int-y \ln y^{-2} \mathrm{~d} y=\int 2 y \ln y \mathrm{~d} y
$$ \& A1 \& 2 \& CSO AG

\hline \multirow[t]{5}{*}{(ii)} \& $$
\int 2 y \ln y \mathrm{~d} y=y^{2} \ln y-\int y^{2}\left(\frac{1}{y}\right) \mathrm{d} y
$$ \& M1 \& \& $\ldots=k y^{2} \ln y \pm \int \mathrm{f}(y) \mathrm{d} y$ with $\mathrm{f}(y)$ not involving the 'original' $\ln y$

\hline \& \& A1 \& \&

\hline \& $$
\begin{aligned}
& \ldots \ldots=y^{2} \ln y-\frac{1}{2} y^{2}+c \\
& \int_{0}^{1} 2 y \ln y \mathrm{~d} y=\lim _{a \rightarrow 0} \int_{a}^{1} 2 y \ln y \mathrm{~d} y
\end{aligned}
$$ \& A1 \& \& Condone absence of ' $+c$ '

\hline \& $$
=\left(0-\frac{1}{2}\right)-\lim _{a \rightarrow 0}\left[a^{2} \ln a-\frac{a^{2}}{2}\right]
$$ \& M1 \& \&

\hline \& $$
=-\frac{1}{2} \text { since } \lim _{a \rightarrow 0} a^{2} \ln a=0
$$ \& A1 \& 5 \& CSO Must see clear indication that cand has correctly considered

$$
\lim _{a \rightarrow 0} a^{k} \ln a=0
$$

\hline (iii) \& So $\int_{1}^{\infty} \frac{\ln x^{2}}{x^{3}} \mathrm{~d} x=\frac{1}{2}$ \& B1F \& 1 \& ft on minus c's value as answer to (b)(ii)

\hline \& Total \& \& 9 \&

\hline \multirow[t]{8}{*}{7} \& \multirow[t]{3}{*}{Aux. eqn. $m^{2}+4=0 \Rightarrow m= \pm 2 \mathrm{i}$ CF is $A \cos 2 x+B \sin 2 x$} \& B1 \& \&

\hline \& \& M1 \& \& OE. If m is real give M0

\hline \& \& A1F \& \& ft on incorrect complex value for m

\hline \& PI: Try $a x^{2}+b$

\[
+c \sin x

\] \& | M1 |
| :--- |
| M1 | \& \& Award even if extra terms, provided the relevant coefficients are shown to be zero.

\hline \& $2 a-c \sin x+4 a x^{2}+4 b+4 c \sin x=8 x^{2}+9 \sin x$ \& \& \&

\hline \& $$
a=2, \quad b=-1,
$$ \& A1 \& \& Dep on relevant M mark

\hline \& $c=3$ \& A1 \& \& Dep on relevant M mark

\hline \& $(y=) A \cos 2 x+B \sin 2 x+2 x^{2}-1+3 \sin x$ \& B1F \& 8 \& Their CF + their PI. Must be exactly two arbitrary constants

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

General Certificate of Education June 2010

Mathematics
MFP3

Further Pure 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1(a)
(b) \& \& \begin{tabular}{l}
M1A1 \\
A1 \\
M1 \\
A1F \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
Condone > 4dp \\
Ft on cand's answer to (a) \\
CAO Must be 2.019 \\
Note: If using degrees max mark is 4/6 ie M1A1A0;M1A1FA0
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 2(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& -4 k \sin 2 x+k \sin 2 x=\sin 2 x \\
\& k=-\frac{1}{3}
\end{aligned}
\] \\
(Aux. eqn \(\left.m^{2}+1=0\right) \quad m= \pm i\) CF: \(A \cos x+B \sin x\)
\[
(\mathrm{GS}: y=) A \cos x+B \sin x-\frac{1}{3} \sin 2 x
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1F \\
B1F
\end{tabular} \& 3

4 \& | Substituting into the differential equation |
| :--- |
| Accept correct PI |
| PI |
| M0 if m is real |
| OE Ft on incorrect complex values for m For the A1F do not accept if left in the form $A e^{i x}+B e^{-i x}$ |
| c's CF + c's PI but must have 2 constants |

\hline \& Total \& \& 7 \&

\hline | 3(a) |
| :--- |
| (b) |
| (c) | \& The interval of integration is infinite

\[
$$
\begin{aligned}
& \int 4 x \mathrm{e}^{-4 \mathrm{x}} \mathrm{~d} x=-x \mathrm{e}^{-4 x}-\int-\mathrm{e}^{-4 \mathrm{x}} \mathrm{~d} x \\
& =-x \mathrm{e}^{-4 x}-\frac{1}{4} \mathrm{e}^{-4 x}\{+\mathrm{c}\} \\
& \mathrm{I}=\int_{1}^{\infty} 4 x \mathrm{e}^{-4 \mathrm{x}} \mathrm{~d} \mathrm{~d}=\lim \lim _{a \rightarrow \infty} \int_{1}^{a} 4 x \mathrm{e}^{-4 x} \mathrm{~d} x \\
& \lim _{a \rightarrow \infty}\left\{-a \mathrm{e}^{-4 a}-\frac{1}{4} \mathrm{e}^{-4 a}\right\}-\left[-\frac{5}{4} \mathrm{e}^{-4}\right] \\
& \lim a \mathrm{e}^{-4 a}=0 \\
& a \rightarrow \infty \\
& \mathrm{I}=\frac{5}{4} \mathrm{e}^{-4}
\end{aligned}
$$

\] \& | E1 |
| :--- |
| M1 |
| A1 |
| A1F |
| M1 |
| M1 |
| A1 | \& 1

3

3 \& | OE |
| :--- |
| $k x e^{-4 x}-\int k \mathrm{e}^{-4 x} \mathrm{~d} x$ for non-zero k |
| Condone absence of $+c$ |
| $\mathrm{F}(a)-\mathrm{F}(1)$ with an indication of limit ' $a \rightarrow \infty$ ' |
| For statement with limit/ limiting process shown |
| CSO |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4	IF is $\exp \left(\int \frac{3}{x} \mathrm{~d} x\right)$ $\begin{aligned} & =\mathrm{e}^{3 \ln x} \\ & =x^{3} \end{aligned}$ $\frac{\mathrm{d}}{\mathrm{~d} x}\left[y x^{3}\right]=x^{3}\left(x^{4}+3\right)^{\frac{3}{2}}$ $\Rightarrow y x^{3}=\frac{1}{10}\left(x^{4}+3\right)^{\frac{5}{2}}+A$ $\Rightarrow \frac{1}{5}=\frac{1}{10}(4)^{\frac{5}{2}}+A$ $\begin{align*} & \Rightarrow A=-3 \tag{*}\\ & \Rightarrow y x^{3}=\frac{1}{10}\left(x^{4}+3\right)^{\frac{5}{2}}-3 \end{align*}$	M1 A1 A1 M1 A1 m1 A1 m1 A1	9	and with integration attempted PI LHS. Use of c's IF. PI $k\left(x^{4}+3\right)^{\frac{5}{2}}$ Condone missing ' A ' Use of boundary conditions in attempt to find constant after intgr. Dep on two M marks, not dep on m ACF. The A1 can be awarded at line (*) provided a correct earlier eqn in y, x and ' A ' is seen immediately before boundary conditions are substituted.
	Total		9	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\cos 4 x \approx 1-\frac{(4 x)^{2}}{2}+\frac{(4 x)^{4}}{4!} \ldots$	M1		Clear attempt to replace x by $4 x$ in expansion of $\cos x$...condone missing brackets for the M mark
	$\approx 1-8 x^{2}+\frac{32}{3} x^{4} \ldots$	A1	2	
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} y}=\frac{1}{0^{x}} \times\left(-\mathrm{e}^{x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\left(2-\mathrm{e}^{x}\right)\left(-\mathrm{e}^{x}\right)-\left(-\mathrm{e}^{x}\right)\left(-\mathrm{e}^{x}\right)}{\left(2-\mathrm{e}^{x}\right)^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Quotient rule OE ACF
	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{\left(2-\mathrm{e}^{x}\right)^{2}\left(-2 \mathrm{e}^{x}\right)-\left(-2 \mathrm{e}^{x}\right) 2\left(2-\mathrm{e}^{x}\right)\left(-\mathrm{e}^{x}\right)}{\left(2-\mathrm{e}^{x}\right)^{4}}$	m1		All necessary rules attempted (dep on previous 2 M marks)
		A1	6	ACF
(ii)	$\begin{aligned} & y(0)=0 ; y^{\prime}(0)=-1 ; y^{\prime \prime}(0)=-2 ; y^{\prime \prime \prime}(0)=-6 \\ & \operatorname{Ln}\left(2-\mathrm{e}^{x}\right) \approx y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0)+\frac{x^{3}}{6} y^{\prime \prime \prime}(0) \ldots \end{aligned}$	M1		At least three attempted
	$\ldots . \approx-x-x^{2}-x^{3} \ldots$	A1	2	CSO AG (The previous 7 marks must have been awarded and no double errors seen)
(c)	$\left[\frac{x \ln \left(2-\mathrm{e}^{x}\right)}{1-\cos 4 x}\right] \approx \frac{-x^{2}-x^{3}-x^{4} \ldots}{8 x^{2}-\frac{32}{-} x^{4}}$	M1		Using the expansions
	Limit $=\lim _{x \rightarrow 0} \frac{-x^{2}-o\left(x^{3}\right)}{8 x^{2}-o\left(x^{4}\right)}$			The notation $o\left(x^{n}\right)$ can be replaced by a term of the form $k x^{n}$
	$\ldots .=\lim _{x \rightarrow 0} \frac{-1-o(x)}{8-o\left(x^{2}\right)}$	m1		Division by x^{2} stage before taking the limit
	$\ldots \ldots=-\frac{1}{8}$	A1	3	CSO
	Total		13	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$x^{2}+y^{2}=r^{2}, x=r \cos \theta, y=r \sin \theta$	B2,1,0		B1 for one stated or used
	$r^{2}=2 r(\cos \theta-\sin \theta)$	M1		
	$x^{2}+y^{2}=2(x-y)$	A1	4	ACF
	$(x-1)^{2}+(y+1)^{2}=2$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		
	Centre (1, -1); radius $\sqrt{ } 2$	A1F	3	
(b)(i)	$\text { Area }=\frac{1}{2} \int(4+\sin \theta)^{2} \mathrm{~d} \theta$	M1		Use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$.
	$=\frac{1}{2} \int_{0}^{2 \pi}\left(16+8 \sin \theta+\sin ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Correct expn of $[4+\sin \theta]^{2}$ Correct limits
	$=\int_{0}^{2 \pi}(8+4 \sin \theta+0.25(1-\cos 2 \theta)) \mathrm{d} \theta$	M1		Attempt to write $\sin ^{2} \theta$ in terms of $\cos 2 \theta$
	$\begin{aligned} & =\left[8 \theta-4 \cos \theta+\frac{1}{4} \theta-\frac{1}{8} \sin 2 \theta\right]_{0}^{2 \pi} \\ & =16.5 \pi \end{aligned}$	A1F A1	6	Correct integration ft wrong coefficients CSO
(ii)	For the curves to intersect, the eqn $2(\cos \theta-\sin \theta)=4+\sin \theta$ must have a solution.	M1		Equating rs and simplifying to a suitable form
	$R \cos (\theta+\alpha)=4$	M1		OE. Forming a relevant eqn from which valid explanation can be stated directly
	where $R=\sqrt{2^{2}+3^{2}}$ and $\cos \alpha=\frac{2}{R}$	A1		OE. Correct relevant equation
	$\cos (\theta+\alpha)=\frac{4}{\sqrt{13}}>1$. Since must have $-1 \leq \cos X \leq 1$ there are no solutions of the equation $2(\cos \theta-\sin \theta)=4+\sin \theta$ so the two curves do not intersect.	E1	4	Accept other valid explanations.
(iii)	Required area $=$			
	$\begin{gathered} \text { answer (b)(i) }-\pi\left(\text { radius of } C_{1}\right)^{2} \\ =16.5 \pi-2 \pi=14.5 \pi \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$	2	Ft on (a)(ii) and (b)(i)
	Total		19	

MFP3 (cont)

General Certificate of Education (A-level) January 2011

Mathematics
MFP3

(Specification 6360)

Further Pure 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& k_{1}=0.1 \times(3+\sqrt{4}) \quad(=0.5) \\
\& k_{2}=0.1 \mathrm{f}(3.1,4.5) \\
\& k_{2}=0.1 \times(3.1+\sqrt{4.5})=0.522132 \ldots \\
\& y(3.1)=y(3)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\
\& \quad=4+0.5 \times 1.022132 \ldots \\
\& y(3.1)=4.511
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 5 \& \begin{tabular}{l}
PI accept 3dp or better \\
Dep on previous two Ms and numerical values for \(k\) 's Must be 4.511
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline 2(a)
(b) \& \[
\begin{aligned}
\& p \cos x-q \sin x+5 p \sin x+5 q \cos x=13 \cos x \\
\& p+5 q=13 ; \quad 5 p-q=0 \\
\& p=\frac{1}{2} ; \quad q=\frac{5}{2} \\
\& \text { Aux. eqn. } \quad m+5=0 \\
\& \left(y_{C F}=\right) A \mathrm{e}^{-5 x} \\
\& \left(y_{G S}=\right) A \mathrm{e}^{-5 x}+\frac{1}{2} \sin x+\frac{5}{2} \cos x \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { m1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1F }
\end{gathered}
\] \& 3
3
3 \& \begin{tabular}{l}
Differentiation and subst. into DE Equating coeffs. \\
OE Need both \\
PI. Or solving \(y^{\prime}(x)+5 y=0\) as far as \(y=\) OE \\
c's CF + c's PI with exactly one arbitrary constant OE
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 3(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& r+r \cos \theta=2 \\
\& r+x=2 \\
\& r=2-x \\
\& x^{2}+y^{2}=(2-x)^{2} \\
\& y^{2}=4-4 x
\end{aligned}
\] \\
Equation of line: \(r \cos \theta=\frac{3}{4} \Rightarrow x=\frac{3}{4}\)
\[
y^{2}=4-4\left(\frac{3}{4}\right)=1 \Rightarrow y= \pm 1 ; \quad\left[\operatorname{Pts}\left(\frac{3}{4}, \pm 1\right)\right]
\] \\
Distance between pts \((0.75,1)\) and \((0.75,-1)\) is 2 \\
Altn: \\
At pts of intersection, \(r=\frac{5}{4}\) and \(\cos \theta=\frac{3}{5} \mathrm{OE}\) Distance
\[
\begin{aligned}
P Q \& =2 r \sin \theta \\
\& =2 \times \frac{5}{4} \times \frac{4}{5}=2
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { B1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { (M1A1) } \\
\text { (M1) } \\
\text { (A1) }
\end{gathered}
\] \& 5

4 \& | $r \cos \theta=x$ stated or used |
| :--- |
| $r^{2}=x^{2}+y^{2}$ used |
| Must be in the form $y^{2}=\mathrm{f}(x)$ but accept ACF for $\mathrm{f}(x)$. |
| Use of $r \cos \theta=x$ |
| $4 x=3$ OE |
| (M1 elimination of either r or θ) |
| (For A condone slight prem approx.) |
| Or use of cosine rule or Pythag. |
| Must be from exact values. |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MFP3(cont)

Q	Solution	Marks	Total	Comments
Q	IF is $\mathrm{e}^{\int-\frac{2}{x} d x}$	M1		Award even if negative sign missing
	$=\mathrm{e}^{-2 \ln (x)(+\mathrm{c})}=\mathrm{e}^{\ln (x)^{-2}(+c)}$	A1		OE Condone missing c
	$=(k) x^{-2}$	A1F		Ft earlier sign error
	$\begin{aligned} & x^{-2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 x^{-3} y=2 x e^{2 x} \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{-2} y\right)=2 x \mathrm{e}^{2 x} \end{aligned}$	M1		LHS as $\mathrm{d} / \mathrm{d} x(y \times$ IF) PI
	$\begin{aligned} x^{-2} y & =\int 2 x \mathrm{e}^{2 x} \mathrm{~d} x \\ & =\int x \mathrm{~d}\left(\mathrm{e}^{2 x}\right)=x \mathrm{e}^{2 x}-\int \mathrm{e}^{2 x} \mathrm{~d} x \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Integration by parts in correct dirn
	$x^{-2} y=x \mathrm{e}^{2 x}-\frac{1}{2} \mathrm{e}^{2 x}(+c)$	A1		ACF
	$\frac{1}{4} \mathrm{e}^{4}=2 \mathrm{e}^{4}-\frac{1}{2} \mathrm{e}^{4}+c$	m1		Boundary condition used to find c after integration.
	$c=-\frac{5}{4} \mathrm{e}^{4}$			
	$y=x^{3} \mathrm{e}^{2 x}-\frac{1}{2} x^{2} \mathrm{e}^{2 x}-\frac{5}{4} x^{2} \mathrm{e}^{4}$	A1	9	Must be in the form $y=\mathrm{f}(x)$
	Total		9	

MFP3(cont)

Q	Solution	Marks	Total	Comments
5(a)	$\frac{12 x+8-12 x-3}{(4 x+1)(3 x+2)}=\frac{5}{(4 x+1)(3 x+2)}$	B1	1	Accept $C=5$
(b)	$\int \frac{10}{(4 x+1)(3 x+2)} \mathrm{d} x=2 \int\left(\frac{4}{4 x+1}-\frac{3}{3 x+2}\right) \mathrm{d} x$	M1		
	$=2[\ln (4 x+1)-\ln (3 x+2)](+c)$	A1		OE
	$\mathrm{I}=\lim _{a \rightarrow \infty} \int_{1}^{a}\left(\frac{10}{(4 x+1)(3 x+2)}\right) \mathrm{d} x$	M1		∞ replaced by a and $\lim _{a \rightarrow \infty}$ (OE)
	$=2 \lim _{a \rightarrow \infty}[\ln (4 a+1)-\ln (3 a+2)]-(\ln 5-\ln 5)$			
	$=2 \lim _{a \rightarrow \infty}\left[\ln \left(\frac{4 a+1}{3 a+2}\right)\right]=2 \lim _{a \rightarrow \infty}\left[\ln \left(\frac{4+\frac{1}{a}}{3+\frac{2}{a}}\right)\right]$	m1,m1		Limiting process shown. Dependent on the previous M1M1
	$=2 \ln \frac{4}{3}=\ln \frac{16}{9}$	A1	6	CSO
	Total		7	

MFP3(cont)

MFP3(cont)

General Certificate of Education (A-level) June 2011

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
2(a)	$\begin{aligned} & \text { PI: } y_{P I}=p+q x \mathrm{e}^{-2 x} \\ & y_{P I}^{\prime}=q \mathrm{e}^{-2 x}-2 q x \mathrm{e}^{-2 x} \\ & y^{\prime \prime}{ }_{P I}=-4 q \mathrm{e}^{-2 x}+4 q x \mathrm{e}^{-2 x} \end{aligned}$	M1		Product rule used
	$\begin{aligned} & -4 q \mathrm{e}^{-2 x}+4 q x \mathrm{e}^{-2 x}+q \mathrm{e}^{-2 x}-2 q x \mathrm{e}^{-2 x} \\ & -2 p-2 q x \mathrm{e}^{-2 x}=4-9 \mathrm{e}^{-2 x} \end{aligned}$	M1		Subst. into DE
	$\begin{aligned} & -3 q=-9 \text { and }-2 p=4 \\ & -3 q=-9 \text { so } q=3 ; \\ & -2 p=4 \text { so } p=-2 ; \\ & {\left[y_{P I}=3 x \mathrm{e}^{-2 x}-2\right]} \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	5	Equating coefficients
(b)	$\begin{aligned} & \text { Aux. eqn. } m^{2}+m-2=0 \\ & (m-1)(m+2)=0 \end{aligned}$	M1		Factorising or using quadratic formula OE PI by correct two values of ' m ' seen/used
	$y_{C F}=A \mathrm{e}^{x}+B \mathrm{e}^{-2 x}$	A1		
	$y_{G S}=A \mathrm{e}^{x}+B \mathrm{e}^{-2 x}+3 x \mathrm{e}^{-2 x}-2$	B1F	3	$\left(y_{G S}\right)=$ c's CF + c's PI, provided 2 arbitrary constants
(c)	$x=0, y=4 \Rightarrow 4=A+B-2$	B1F		Only ft if exponentials in GS
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=A \mathrm{e}^{x}-2 B \mathrm{e}^{-2 x}+3 \mathrm{e}^{-2 x}-6 x \mathrm{e}^{-2 x}$ As $x \rightarrow \infty,\left(\mathrm{e}^{-2 x} \rightarrow 0\right.$ and $) x \mathrm{e}^{-2 x} \rightarrow 0$	E1		
	As $x \rightarrow \infty, \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 0$ so $A=0$ When $A=0,4=0+B-2 \Rightarrow B=6$ $y=6 \mathrm{e}^{-2 x}+3 x \mathrm{e}^{-2 x}-2$	B1 B1	4	$y=6 \mathrm{e}^{-2 x}+3 x \mathrm{e}^{-2 x}-2 \quad$ OE
	Total		12	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \sec ^{2} x}{1+2 \tan x}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		Chain rule ACF for $y^{\prime}(x)$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{(1+2 \tan x)\left(4 \sec ^{2} x \tan x\right)-2 \sec ^{2} x\left(2 \sec ^{2} x\right)}{(1+2 \tan x)^{2}}$	M1 A1	4	Quotient rule OE in which both u and v are not const. or applied to a correct form of y^{\prime} ACF for $y^{\prime \prime}(x)$
(b)	$\begin{aligned} & \text { McC. Thm: } y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0) \\ & (y(0)=0) ; \quad y^{\prime}(0)=2 ; \quad y^{\prime \prime}(0)=-4 \end{aligned}$	M1		Attempt to evaluate at least $y^{\prime}(0)$ and $y^{\prime \prime}(0)$. PI
	$\ln (1+2 \tan x) \approx 2 x-2 x^{2}$	A1	2	Dep on previous 5 marks
(c)	$\ln (1-x)=-x-\frac{1}{2} x^{2} \ldots$	B1		Ignore higher power terms
	$\left[\frac{\ln (1+2 \tan x)}{\ln (1-x)}\right] \approx \frac{2 x-2 x^{2} \ldots}{-x-\frac{1}{-x^{2} \ldots}}$	M1		Expansions used
	$=\frac{2-2 x_{\ldots}}{-1-\frac{1}{2} x_{\ldots}}$	m1		Dividing num. and den. by x to get constant term in each and non-const term in at least num. or den.
	So $\lim _{x \rightarrow 0}\left[\frac{\ln (1+2 \tan x)}{\ln (1-x)}\right]=\frac{2}{-1}=-2$	A1F	4	ft c's answer to (b) provided answer (b) is in the form $\pm p x \pm q x^{2} \ldots$ and B1 awarded
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)	$u=\frac{\mathrm{d} y}{\mathrm{~d} x}-2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2$ DE becomes	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Differentiating subst wrt x, \geq two terms correct
(b)	$\begin{aligned} & \left(x^{3}+1\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} x}+2\right)-3 x^{2}(u+2 x)=2-4 x^{3} \\ & \left(x^{3}+1\right) \frac{\mathrm{d} u}{\mathrm{~d} x}+2 x^{3}+2-3 x^{2} u-6 x^{3}=2-4 x^{3} \end{aligned}$	M1		Substitute into LHS of DE as far as no ys
	DE becomes $\left(x^{3}+1\right) \frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2} u$	A1	4	CSO AG
	$\int \frac{1}{u} \mathrm{~d} u=\int \frac{3 x^{2}}{x^{3}+1} \mathrm{~d} x$	M1		Separate variables OE PI
	$\ln u=\ln \left(x^{3}+1\right)+\ln A$	A1;A1		$\ln u ; \ln \left(x^{3}+1\right)$
	$u=A\left(x^{3}+1\right)$	A1F A1		Applying law of logs to correctly combine two log terms or better OE RHS
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=A\left(x^{3}+1\right)+2 x$	m1		$u=\mathrm{f}(x) \text { to } \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \mathrm{f}(x) \pm 2 x$
	$y=A\left(\frac{x^{4}}{4}+x\right)+x^{2}+B$	m1 A1	8	Solution with two arbitrary constants and both previous M and m scored OE RHS
	Total		12	

General Certificate of Education (A-level) January 2012

Mathematics
MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} y(1.1) & =y(1)+0.1\left[\frac{2-1}{4+1}\right] \\ & =2+0.02=2.02 \\ y(1.2) & =y(1)+2(0.1)\{\mathrm{f}[1.1, y(1.1)]\} \\ & =2+2(0.1)\left[\frac{2.02-1.1}{2.02^{2}+1.1}\right] \\ & =2.035518 \ldots=2.036 \text { to } 3 \mathrm{dp} \end{aligned}$	M1A1 A1 M1 A1F A1	3	ft on c 's answer to (a) CAO Must be 2.036
	Total		6	
2	$\begin{aligned} & \sqrt{4+x}=2\left(1+\frac{x}{4}\right)^{\frac{1}{2}}=2\left[1+\frac{1}{2}\left(\frac{x}{4}\right)+O\left(x^{2}\right)\right] \\ & {\left[\frac{\sqrt{4+x}-2}{x+x^{2}}\right]=\left[\frac{\frac{x}{4}+O\left(x^{2}\right)}{x+x^{2}}\right]=\left[\frac{\frac{1}{4}+O(x)}{1+x}\right]} \\ & \lim _{x \rightarrow 0}\left[\frac{\sqrt{4+x}-2}{x+x^{2}}\right]=\frac{1}{4} \end{aligned}$	M1 m1 A1	3	Attempt to use binomial theorem OE The notation $O\left(x^{n}\right)$ can be replaced by a term of the form $k x^{n}$ Division by x stage before taking the limit CSO NMS 0/3
	Total		3	
3	$\begin{aligned} & m^{2}+2 m+10=0 \\ & m=-1 \pm 3 i \end{aligned}$ Complementary function is $(y=) \mathrm{e}^{-x}(A \cos 3 x+B \sin 3 x)$ Particular integral: try $y=k e^{x}$ $k+2 k+10 k=26 \Rightarrow k=2$ $(\text { GS } y=) \mathrm{e}^{-x}(A \cos 3 x+B \sin 3 x)+2 \mathrm{e}^{x}$ $x=0, y=5 \Rightarrow 5=A+2 \text { so } A=3$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}= \\ & \mathrm{e}^{-x}(-3 A \sin 3 x+3 B \cos 3 x-A \cos 3 x-B \sin 3 x)+2 \mathrm{e}^{x} \\ & 11=3 B-A+2 \quad(B=4) \\ & y=\mathrm{e}^{-x}(3 \cos 3 x+4 \sin 3 x)+2 \mathrm{e}^{x} \\ & \hline \end{aligned}$	M1 A1 A1F M1 A1 B1F B1F M1 A1 A1	10	OE Ft on incorrect complex value of m c's CF+ c's non-zero PI but must have 2 arb consts ftc 's k ie $A=5-k, k \neq 0$ Attempt to differentiate c's GS (ie $\mathrm{CF}+\mathrm{PI}$) CSO
	Total		10	

Q	Solution	Marks	Total	Comments
5(a)	The interval of integration is infinite	E1	1	OE
(b)	$\begin{aligned} & u=x^{2} \mathrm{e}^{-4 x}+3 \Rightarrow \mathrm{~d} u=\left(2 x \mathrm{e}^{-4 x}-4 x^{2} \mathrm{e}^{-4 x}\right) \mathrm{d} x \\ & \int \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x=\int \frac{1}{2} \times \frac{2 x(1-2 x) \mathrm{e}^{-4 x}}{x^{2} \mathrm{e}^{-4 x}+3} \mathrm{~d} x \end{aligned}$	M1		$\mathrm{d} u / \mathrm{d} x$ or 'better'
	$=\frac{1}{2} \times \int \frac{1}{u} \mathrm{~d} u$	A1		
	$=\frac{1}{2} \ln u+c=\frac{1}{2} \ln \left(x^{2} \mathrm{e}^{-4 x}+3\right)\{+c\}$	A1	3	OE Condone missing c. Accept later substitution back if explicit
(c)	$\mathrm{I}=\int_{\frac{1}{2}}^{\infty} \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x$			
	$=\lim _{a \rightarrow \infty} \int_{\frac{1}{2}}^{a} \frac{x(1-2 x)}{x^{2}+3 \mathrm{e}^{4 x}} \mathrm{~d} x$	M1		
	$=\lim _{a \rightarrow \infty} \frac{1}{2}\left\{\ln \left(a^{2} \mathrm{e}^{-4 a}+3\right)-\ln \left(\frac{\mathrm{e}^{-2}}{4}+3\right)\right\}$	M1		Uses part (b) and $\mathrm{F}(\mathrm{a})-\mathrm{F}(1 / 2)$
	$=\frac{1}{2} \ln \left\{\lim _{a \rightarrow \infty}\left(a^{2} \mathrm{e}^{-4 a}+3\right)\right\}-\frac{1}{2} \ln \left(\frac{\mathrm{e}^{-2}}{4}+3\right)$			
	Now $\lim _{a \rightarrow \infty}\left(a^{2} \mathrm{e}^{-4 a}\right)=0$	E1		Stated explicitly (could be in general form)
	$\mathrm{I}=\frac{1}{2} \ln 3-\frac{1}{2} \ln \left(\frac{\mathrm{e}^{-2}}{4}+3\right)$	A1	4	CSO ACF
	Total		8	

Q	Solution	Marks	Total	Comments
6(a)	$y=\ln \cos 2 x \Rightarrow y^{\prime}(x)=\frac{1}{\cos 2 x}(-2 \sin 2 x)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule
	$y^{\prime \prime}(x)=-4 \sec ^{2} 2 x$	m1		$\lambda \sec ^{2} 2 x$ OE
	$\begin{aligned} & y^{\prime \prime \prime}(x)=-8 \sec 2 x(2 \sec 2 x \tan 2 x) \\ & \left\{y^{\prime \prime \prime}(x)=-16 \tan 2 x\left(\sec ^{2} 2 x\right)\right\} \end{aligned}$	M1		$K \sec ^{2} 2 x \tan 2 x$ OE
	$\begin{aligned} y^{\prime \prime \prime \prime}(x)= & -16\left[2 \sec ^{2} 2 x\left(\sec ^{2} 2 x\right)+\right. \\ & \tan 2 x(2 \sec 2 x(2 \sec 2 x \tan 2 x))] \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	6	Product rule OE ACF
(b)	$\begin{aligned} & y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=-4, y^{\prime \prime \prime}(0)=0, \\ & y^{\prime \prime \prime \prime \prime}(0)=-32 \end{aligned}$	B1F		$\mathrm{ft} \mathrm{c's} \mathrm{derivatives}$
	$\begin{aligned} \ln \cos 2 x & \approx 0+0+\frac{x^{2}}{2}(-4)+0+\frac{x^{4}}{4!}(-32) \\ & \approx-2 x^{2}-\frac{4}{3} x^{4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	CSO throughout parts (a) and (b) AG
(c)	$\ln \left(\sec ^{2} 2 x\right)=-2 \ln (\cos 2 x)$	M1		PI
	$\approx 4 x^{2}+\frac{8}{3} x^{4}$	A1	2	
	Total		11	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
7(\mathrm{a})
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& u=x y \\
\& \frac{\mathrm{~d} u}{\mathrm{~d} x}=y+x \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\& \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \\
\& x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2(3 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y(3 x+2)=18 x \\
\& \left(x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+6\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)+9 x y=18 x \\
\& \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} u}{\mathrm{~d} x}+9 u=18 x \\
\& \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} u}{\mathrm{~d} x}+9 u=18 x \\
\& \mathrm{CF}: \mathrm{Aux} \mathrm{eqn} m^{2}+6 m+9=0 \\
\& (m+3)^{2}=0 \quad \mathrm{so} m=-3 \\
\& \mathrm{CF}:(u=) \mathrm{e}^{-3 x}(A x+B) \\
\& \mathrm{PI}: \text { Try }(u=) p x+q \\
\& 0+6 p+9(p x+q)=18 x \\
\& 9 p=18, \quad 6 p+9 q=0 \\
\& p=2 ; q=-\frac{12}{9} \\
\& u=\mathrm{e}^{-3 x}(A x+B)+2 x-\frac{4}{3} \\
\& x y=\mathrm{e}^{-3 x}(A x+B)+2 x-\frac{4}{3} \\
\& y=\frac{1}{x}\left\{\mathrm{e}^{-3 x}(A x+B)+2 x-\frac{4}{3}\right\}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1F \\
M1 \\
m1 \\
A1 \\
B1F \\
A1
\end{tabular} \& 4

8 \& | Product rule OE |
| :--- |
| OE |
| OE |
| CSO AG Be convinced |
| PI |
| PI |
| PI. Must be more than just stated |
| Both |
| c's CF + c's PI but must have 2 constants, also must be in the form $u=\mathrm{f}(x)$ |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

General Certificate of Education (A-level) June 2012

Mathematics
MFP3

(Specification 6360)

Further Pure 3

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only CSO
	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & k_{1}=0.25 \times(\sqrt{2 \times 2}+\sqrt{9}) \quad(=1.25) \\ & k_{2}=0.25 \mathrm{f}(2.25,9+1.25) \\ & k_{2}=0.25 \times(\sqrt{2 \times 2.25}+\sqrt{9+1.25}) \\ & k_{2}=1.33(072 \ldots) \\ & y(2.25)=y(2)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\ & =9+0.5[1.25+1.33(072 \ldots)] \\ & =9+0.5 \times 2.58(072 \ldots) \\ & y(2.25)=10.29036 \ldots=10.29(t \mathrm{to} 2 \mathrm{dp}) \end{aligned}$	M1 M1 A1 m1 A1	5	PI. May see within given formula Either $k_{2}=0.25 \mathrm{f}(2.25,10.25)$ stated/used or $k_{2}=0.25 \times\left(\sqrt{2 \times 2.25}+\sqrt{9+c^{\prime} \mathrm{s} k_{1}}\right)$ PI. May see within given formula $k_{2}=1.33(072 \ldots) 2 \mathrm{dp}$ or better PI by later work Dep on previous two Ms and $y(2)=9$ and numerical values for k 's CAO Must be 10.29
	Total		5	
2(a) (b)	$\begin{aligned} & \sin 2 x=2 x-\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!} \ldots \\ & =2 x-\frac{4}{3} x^{3}+\frac{4}{15} x^{5} \\ & \lim _{x \rightarrow 0}\left[\frac{2 x-\sin 2 x}{x^{2} \ln (1+k x)}\right] \\ & =\lim _{x \rightarrow 0} \frac{2 x-\left(2 x-\frac{4}{3} x^{3}+\frac{4}{15} x^{5} \ldots\right)}{x^{2}\left(k x-\frac{(k x)^{2}}{2}+\ldots\right)} \\ & =\lim _{x \rightarrow 0}\left[\frac{\frac{4}{3} x^{3}-\frac{4}{15} x^{5}+. .}{\left.k x^{3}-\frac{k^{2}}{2} x^{4}\right]}\right] \\ & \left.=\lim _{x \rightarrow 0}\left[\frac{4}{3}-O\left(x^{2}\right)\right]_{k-O(x)}\right] \\ & \frac{4}{3 k}=16 \Rightarrow k=\frac{1}{12} \end{aligned}$	B1 M1 B1 m1 A1	1	Accept ACF even if unsimplified Using series expansions. Expansion of $\ln (1+k x)=k x(-\ldots)$ Dividing numerator and 0 denominator by x^{3} to get constant term in each. Must be at least a total of 3 terms divided by x^{3} OE exact value. Dep on numerator being of form $4 / 3(\mathrm{OE})+\lambda x^{2} \ldots(\lambda \neq 0)$ and denominator being of form $k+\mu x . .(\mu \neq 0)$ before limit taken
	Total		5	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3 \& \[
\begin{aligned}
\& \text { Area }=\frac{1}{2} \int(2 \sqrt{1+\tan \theta})^{2}(\mathrm{~d} \theta) \\
\& =\frac{1}{2} \int_{-\frac{\pi}{4}}^{0} 4(1+\tan \theta) \mathrm{d} \theta \\
\& =2[\theta+\ln \sec \theta]-\frac{\pi}{4} \\
\& \left.=2\left\{0-\left[-\frac{\pi}{4}+\left.\ln \sec \right|_{\left(-\frac{\pi}{4}\right)} ^{4}\right)\right\}\right\} \\
\& =2\left(\frac{\pi}{4}-\ln \sqrt{2}\right)=\frac{\pi}{2}-2 \ln \sqrt{2}=\frac{\pi}{2}-\ln 2
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
Use of \(\frac{1}{2} \int r^{2}(\mathrm{~d} \theta)\) \\
Correct limits. If any contradiction use the limits at the substitution stage
\[
\int k(1+\tan \theta)(\mathrm{d} \theta)=k(\theta+\ln \sec \theta)
\] \\
ACF ft on c's \(k\)
CSO AG
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline 4(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { IF is } \mathrm{e}^{\int \frac{4}{2 x+1} \mathrm{~d} x} \\
\& \mathrm{e}^{2 \ln (2 x+1)(+c)}=\mathrm{e}^{\ln (2 x+1)^{2}(+c)} \\
\& =(A)(2 x+1)^{2} \\
\& (2 x+1)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4(2 x+1) y=4(2 x+1)^{7} \\
\& \frac{\mathrm{~d}}{\mathrm{~d} x}\left[(2 x+1)^{2} y\right]=4(2 x+1)^{7} \\
\& (2 x+1)^{2} y=\int 4(2 x+1)^{7} \mathrm{~d} x \\
\& (2 x+1)^{2} y=\frac{1}{4}(2 x+1)^{8}(+c)
\end{aligned}
\] \\
(GS): \(\quad y=\frac{1}{4}(2 x+1)^{6}+c(2 x+1)^{-2}\)
\[
y=\frac{1}{4}(2 x+1)^{6}+c(2 x+1)^{-2}
\] \\
When \(x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\)
\[
\begin{aligned}
\& \Rightarrow y=1\left[\frac{\mathrm{~d} y}{\mathrm{~d} x}=3(2 x+1)^{5}-4 c(2 x+1)^{-3}\right] \\
\& \Rightarrow c=\frac{3}{4} \text { so } y=\frac{1}{4}(2 x+1)^{6}+\frac{3}{4}(2 x+1)^{-2}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1F \\
M1 \\
A1 \\
B1F \\
A1 \\
M1 \\
B1 \\
A1
\end{tabular} \& 7

3 \& | PI |
| :--- |
| Either O.E. Condone missing ' $+c$ ' Ft on earlier $\mathrm{e}^{\lambda \ln (2 x+1)}$, condone missing ' A ' |
| LHS as $\mathrm{d} / \mathrm{d} x(y \times$ c's IF) PI and also RHS of form $p(2 x+1)^{q}$ |
| Correct integration of $p(2 x+1)^{q}$ to $\frac{p(2 x+1)^{q+1}}{2(q+1)}(+c)$ ft for $q>2$ only Must be in the form $y=\mathrm{f}(x)$, where $\mathrm{f}(x)$ is ACF |
| Using boundary condition $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ and c's GS in (a) towards obtaining a value for c |
| Either $y=1$ or correct expression for $\mathrm{d} y / \mathrm{d} x$ in terms of x only |
| CSO |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 5(a) \& \[
\begin{aligned}
\& \int x^{2} \mathrm{e}^{-x} \mathrm{~d} x=-x^{2} \mathrm{e}^{-x}-\int-2 x \mathrm{e}^{-x} \mathrm{~d} x \\
\& =-x^{2} \mathrm{e}^{-x}+2\left\{-x \mathrm{e}^{-x}-\int-\mathrm{e}^{-x} \mathrm{~d} x\right\} \\
\& =-x^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}(+c) \\
\& \mathrm{I}=\int_{0}^{\infty} x^{2} \mathrm{e}^{-x} \mathrm{~d} x=\lim _{a \rightarrow \infty}^{a} \int_{0}^{a} x^{2} \mathrm{e}^{-x} \mathrm{~d} x \\
\& \lim _{a \rightarrow \infty}\left\{-a^{2} \mathrm{e}^{-a}-2 a \mathrm{e}^{-a}-2 \mathrm{e}^{-a}\right\}-[-2] \\
\& \lim a^{k} \mathrm{e}^{-a}=0 \quad, \quad(\mathrm{k}>0) \\
\& a \rightarrow \infty \\
\& \int_{0}^{\infty} \quad \\
\& \int_{0}^{\infty} x^{2} \mathrm{e}^{-x} \mathrm{~d} x=2
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1 \\
M1 \\
E1 \\
A1
\end{tabular} \& 2 \& \begin{tabular}{l}
\(k x^{2} \mathrm{e}^{-x}-\int 2 k x \mathrm{e}^{-x}(\mathrm{~d} x)\) for \(k= \pm 1\)
\[
\int x \mathrm{e}^{-x} \mathrm{~d} x=\lambda x \mathrm{e}^{-x}-\int \lambda \mathrm{e}^{-x}(\mathrm{~d} x) \text { for }
\] \\
\(\lambda= \pm 1\) in 2nd application of integration by parts \\
Condone absence of \(+c\) \\
\(\mathrm{F}(a)-\mathrm{F}(0)\) with an indication of limit ' \(a \rightarrow \infty\) ' and \(\mathrm{F}(x)\) containing at least one \(x^{n} \mathrm{e}^{-x}, n>0\) term \\
For general statement or specific statement for either \(k=1\) or \(k=2\) \\
CSO
\end{tabular} \\
\hline \& Total \& \& \& \\
\hline \begin{tabular}{l}
6(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\begin{aligned}
\& y=\ln (1+\sin x), \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+\sin x} \times(\cos x) \\
\& \left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right\} \frac{(1+\sin x)(-\sin x)-\cos x(\cos x)}{(1+\sin x)^{2}} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{-\sin x-1}{(1+\sin x)^{2}}=\frac{-1}{1+\sin x}=\frac{-1}{\mathrm{e}^{y}}=-\mathrm{e}^{-y} \\
\& \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=\mathrm{e}^{-y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\& \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}=-\mathrm{e}^{-y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+\mathrm{e}^{-y} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \\
\& \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}=-\mathrm{e}^{-y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}-\left(\mathrm{e}^{-y}\right)^{2} \\
\& y(0)=0 ; y^{\prime}(0)=1 ; y^{\prime \prime}(0)=-1 ; \\
\& y(x) \approx \\
\& y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0)+\frac{x^{3}}{3!} y^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} y^{(\text {iv })}(0) \\
\& y^{\prime \prime \prime}(0)=1 ; y^{(\mathrm{ivi})}(0)=-2 \\
\& \ln (1+\sin x) \approx x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4} \ldots
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
B1F \\
M1 \\
A1
\end{tabular} \& 2
3
3

3
3

3 \& | Chain rule OE |
| :--- |
| ACF eg $\mathrm{e}^{-y} \cos x$ |
| Quotient rule OE, with u and v non constant |
| ACF |
| CSO AG Completion must be convincing |
| ACF for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ |
| Product rule OE and chain rule |
| OE in terms of e^{-y} and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ only |
| Ft only for $y^{\prime}(0)$; other two values must be correct |
| Maclaurin's theorem applied with numerical values for $y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$ and $y^{(\text {iv })}(0)$. M0 if missing an expression for any one of the $1^{\text {st }}, 3^{\text {rd }}$ or $4^{\text {th }}$ derivatives |
| A0 if FIW |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
8(a)	$\begin{aligned} & x y=8 \Rightarrow r \cos \theta r \sin \theta=8 \\ & \frac{1}{2} r^{2} \sin 2 \theta=8 \\ & r^{2}=\frac{16}{\sin 2 \theta}=16 \operatorname{cosec} 2 \theta \end{aligned}$	M1 m1 A1	3	Use of $\sin 2 \theta=2 \sin \theta \cos \theta$ AG Completion
(b)(i)	(At N, r is a minimum $\Rightarrow \sin 2 \theta=1$) $N^{\gamma}\left(4, \frac{\pi}{4}\right)$	B1B1	2	B1 for each correct coordinate.
(ii)	At pts of intersection, $(4 \sqrt{2})^{2}=16 \operatorname{cosec} 2 \theta$	M1		
	$\sin 2 \theta=\frac{1}{2}$	A1		PI by $\operatorname{cosec} 2 \theta=2$ and a correct exact or 3 SF value for 2θ or θ
	$2 \theta=\frac{\pi}{6}, \frac{5 \pi}{6}$	A1		PI OE exact values
	$\left(4 \sqrt{2}, \frac{\pi}{12}\right)\left(4 \sqrt{2}, \frac{5 \pi}{12}\right)$	A1	4	Both required, written in correct order
(iii)	$\begin{aligned} & \angle P O Q=\frac{5 \pi}{12}-\frac{\pi}{12}=\frac{\pi}{3} \\ & \text { or } \angle P O N=\frac{\pi}{6}(=\angle Q O N) \end{aligned}$	B1F		Ft on c's $\theta_{P}, \theta_{Q}, \theta_{N}$ as appropriate OE
	$\begin{aligned} & P N^{2}=(4 \sqrt{2})^{2}+\left(r_{N}\right)^{2}-2(4 \sqrt{2}) r_{N} \cos \left(\frac{1}{2} P O Q\right) \\ & \text { or } P T=4 \sqrt{2} \sin \left(\frac{1}{2} P O Q\right) \\ & \text { or } P T=\frac{1}{2} \times 4 \sqrt{2} \\ & \text { or } N T=4 \sqrt{2} \cos \left(\frac{1}{2} P O Q\right)-r_{N} \end{aligned}$	M1		Finding the lengths of two unequal sides of $\triangle P N Q$ or $\triangle P N T$ or $\triangle Q N T$, where T is the point at which $O N$ produced meets $P Q$. Any valid equivalent methods eg finding $\tan \angle O P N$ or finding $\sin \angle O N P$.
	$\begin{aligned} & P N=\sqrt{(48-16 \sqrt{6})}[=2.96(7855 \ldots)]=N Q \\ & \text { or } P T=2 \sqrt{2}[=2.82(8427 \ldots)] \\ & \text { or } P Q=4 \sqrt{2} \\ & \text { or } N T=2 \sqrt{6}-4[=0.898(979 \ldots)] \end{aligned}$	A1		Two correct unequal lengths of sides of $\triangle P N Q$ or $\triangle P N T$ or $\triangle Q N T$ PI OE eg $\tan \angle O P N=1 /(2 \sqrt{2}-\sqrt{3})$ or $\sin \angle O N P=2 \sqrt{2} /(\sqrt{48-16 \sqrt{6}})$
	$\begin{aligned} & \tan \frac{\alpha}{2}=\frac{P T}{N T}=\frac{2 \sqrt{2}}{2 \sqrt{6}-4}[=3.14626 \ldots] \mathrm{OE} \\ & \text { or } \frac{\alpha}{2}=\frac{\pi}{2}-\left[\frac{\pi}{3}-\tan ^{-1}\left(\frac{1}{2 \sqrt{2}-\sqrt{3}}\right)\right] \text { or } \\ & 32=2 P N^{2}(1-\cos \alpha) \Rightarrow 1-\cos \alpha=\frac{1}{3-\sqrt{6}} \end{aligned}$	m1		Valid method to reach an eqn in α (or in $\frac{\alpha}{2}$) only; dep on prev M but not on prev A. Alternative choosing eg obtuse ONP then $\frac{\alpha}{2}=\pi-1.87(85 \ldots)$
	$\frac{\alpha}{2}=1.263056 \ldots ; \alpha=2.5261 \ldots 2.53 \text { to } 3 \mathrm{sf}$	A1	5	2.53... Condone > 3 sf.
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) January 2013

Mathematics
MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$y(3.2)=y(3)+0.2 \sqrt{2 \times 3+5}$	M1		
	$=5+0.2 \times \sqrt{11}$	A1		
	$=5.66332 \ldots=5.6633 \text { to } 4 \mathrm{dp}$	A1	3	Condone > 4 dp
(b)	$y(3.4)=y(3)+2(0.2)\{\mathrm{f}[3.2, y(3.2)]\}$	M1		
	$\ldots=5+2(0.2) \sqrt{2 \times 3.2+5.6633 \ldots}$	A1F		Ft on cand's answer to (a)
	$(=5+(0.4) \sqrt{12.0633 \ldots})$			
	$=6.389$ to 3dp	A1	3	CAO Must be 6.389
	Total		6	
2				Ignore higher powers beyond x^{2} throughout this question
(a)	$\mathrm{e}^{3 x}=1+3 x+4.5 x^{2}$	B1	1	
(b)	$(1+2 x)^{-3 / 2}=1-3 x+\frac{15}{2} x^{2}$	M1		$(1+2 x)^{-3 / 2}=1 \pm 3 x+k x^{2}$ or $1+k x \pm 7.5 x^{2} \mathrm{OE}$
		A1		$1-3 x+7.5 x^{2}$ OE (simplified PI)
	$\begin{aligned} & \mathrm{e}^{3 x}(1+2 x)^{-3 / 2}= \\ & \quad\left(1+3 x+4.5 x^{2}\right)\left(1-3 x+7.5 x^{2}\right) \end{aligned}$	M1		Product of c's two expansions with an attempt to multiply out to find x^{2} term
	x^{2} term(s): $7.5 x^{2}-9 x^{2}+4.5 x^{2}=3 x^{2}$.	A1	4	
	Total		5	

Q	Solution	Marks	Total	Comments
3	$\begin{aligned} & \text { PI: } y_{P I}=k x^{2} \mathrm{e}^{x} \\ & y^{\prime}{ }_{P I}=2 k x \mathrm{e}^{x}+k x^{2} \mathrm{e}^{x} \\ & y^{\prime \prime}{ }_{P I}=2 k \mathrm{e}^{x}+4 k x \mathrm{e}^{x}+k x^{2} \mathrm{e}^{x} \\ & 2 k \mathrm{e}^{x}+4 k x \mathrm{e}^{x}+k x^{2} \mathrm{e}^{x}-4 k x \mathrm{e}^{x}-2 k x^{2} \mathrm{e}^{x}+k x^{2} \mathrm{e}^{x}=6 \mathrm{e}^{x} \\ & 2 k=6 ; k=3 ; \quad y_{P I}=3 x^{2} \mathrm{e}^{x} \\ & (\text { GS: } y=) \mathrm{e}^{x}(A x+B)+3 x^{2} \mathrm{e}^{x} \end{aligned}$	M1 m1 m1 A1 B1F	5	Product rule used in finding both derivatives Subst. into DE CSO $\mathrm{e}^{x}(A x+B)+k x^{2} \mathrm{e}^{x}, \text { ftc's } k .$
	Total		5	
4(a) (b)	$\begin{aligned} & \text { Integrand is not defined at } x=0 \\ & \int x^{4} \ln x \mathrm{~d} x=\frac{x^{5}}{5} \ln x-\int \frac{x^{5}}{5}\left(\frac{1}{x}\right) \mathrm{d} x \\ & \ldots \ldots=\frac{x^{5}}{5} \ln x-\frac{x^{5}}{25}(+c) \\ & \int_{0}^{1} x^{4} \ln x \mathrm{~d} x=\left\{\lim _{a \rightarrow 0} \int_{a}^{1} x^{4} \ln x \mathrm{~d} x\right\} \\ & =-\frac{1}{25}-\lim _{a \rightarrow 0}\left[\frac{a^{5}}{5} \ln a-\frac{a^{5}}{25}\right] \end{aligned}$ But $\underset{a \rightarrow 0}{\lim } a^{5} \ln a=0$ So $\int_{0}^{1} x^{4} \ln x \mathrm{~d} x=-\frac{1}{25}$	E1	1	OE
		M1		$\ldots=k x^{5} \ln x \pm \int \mathrm{f}(x)$, with $\mathrm{f}(x)$ not involving the 'original' $\ln x$
		A1		
		A1		
		M1		Limit 0 replaced by a limiting process and $\mathrm{F}(1)-\mathrm{F}(a) \mathrm{OE}$
		E1		Accept $\lim _{x \rightarrow 0} x^{k} \ln x=0$ for any $k>0$
		A1	6	Dep on M and A marks all scored
	Total		7	

Q	Solution	Marks	Total	Comments
5	$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\sec ^{2} x}{\tan x} y=\tan x$			
(a)	IF is $\exp \left(\int \frac{\sec ^{2} x}{\tan x} \mathrm{~d} x\right)$	M1		and with integration attempted
	$=\mathrm{e}^{\ln (\tan x)}=\tan x$	A1	2	AG Be convinced
(b)	$\begin{aligned} & \tan x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\sec ^{2} x\right) y=\tan ^{2} x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}[y \tan x]=\tan ^{2} x \end{aligned}$	M1		LHS as differential of $y \times$ IF PI
	$y \tan x=\int \tan ^{2} x \mathrm{~d} x$	A1		
	$\Rightarrow y \tan x=\int\left(\sec ^{2} x-1\right) \mathrm{d} x$	m1		Using $\tan ^{2} x= \pm \sec ^{2} x \pm 1 \quad$ PI or other valid methods to integrate $\tan ^{2} x$
	$y \tan x=\tan x-x(+c)$	A1		Correct integration of $\tan ^{2} x$; condone absence of $+c$.
	$3 \tan \frac{\pi}{4}=\tan \frac{\pi}{4}-\frac{\pi}{4}+c$	m1		Boundary condition used in attempt to find value of c
	$\begin{array}{r} c=2+\frac{\pi}{4} \text { so } y \tan x=\tan x-x+2+\frac{\pi}{4} \\ y=1+\left(2-x+\frac{\pi}{4}\right) \cot x \end{array}$	A1	6	ACF
	Total		8	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} & y=\ln \left(\mathrm{e}^{3 x} \cos x\right)=\ln \mathrm{e}^{3 x}+\ln \cos x=3 x+\ln \cos x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3+\frac{1}{\cos x} \times(-\sin x) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=3-\tan x \end{aligned}$	B1 M1 A1	3	Chain rule for derivative of $\ln \cos x$ CSO AG
(ii)	$\begin{aligned} & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\sec ^{2} x ; \quad \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-2 \sec x(\sec x \tan x) \\ & \frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}=-4 \sec x(\sec x \tan x) \tan x-2 \sec ^{4} x \end{aligned}$	B1; M1 A1	3	M1 for $\mathrm{d} / \mathrm{d} x\left\{[\mathrm{f}(x)]^{2}\right\}=2 \mathrm{f}(x) \mathrm{f}^{\prime}(x)$ ACF
(b)	Maclaurin's Thm:$\begin{aligned} & y(0)+x y^{\prime}(0)+\frac{x^{2}}{2!} y^{\prime \prime}(0)+\frac{x^{2}}{3!} y^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} y^{(i v)}(0) \\ & y(0)=\ln 1=0 ; \quad y^{\prime}(0)=3 ; \quad y^{\prime \prime}(0)=-1 ; \\ & y^{\prime \prime \prime}(0)=0 ; \quad y^{(i v)}(0)=-2 \end{aligned}, \begin{gathered} \ln \left(e^{3 x} \cos x\right)=0+3 x+\frac{-1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{-2}{4!} x^{4} \ldots \\ =3 x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4} \end{gathered}$	M1		Mac. Thm with attempt to evaluate at least two derivatives at $x=0$
		A1F A1	3	At least 3 of 5 terms correctly obtained. Ft one miscopy in (a) CSO AG Be convinced
(c)	$\{\ln (1+p x)\}=p x-\frac{1}{2} p^{2} x^{2}$	B1	1	$\operatorname{accept}(p x)^{2}$ for $p^{2} x^{2}$; ignore higher powers;
(d)(i)	$\left[\frac{1}{x^{2}}\left\{\ln \left(\mathrm{e}^{3 x} \cos x\right)-\ln (1+p x)\right\}\right]=$			
	$\left[\frac{1}{x^{2}}\left\{3 x-\frac{1}{2} x^{2}-O\left(x^{4}\right)-\left(p x-\frac{1}{2} p^{2} x^{2}+O\left(x^{3}\right)\right)\right\}\right]$	M1		Law of logs and expansions used;
	For $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}} \ln \left(\frac{e^{3 x} \cos x}{1+p x}\right)\right]$ to exist, $p=3$	A1		$p=3$ convincingly found
(ii)	$\ldots \ldots=\lim _{x \rightarrow 0}\left[\left(\frac{3-p}{x}\right)-\frac{1}{2}+\frac{p^{2}}{2}-O(x)\right]$	m1		Divide throughout by x^{2} before taking limit. (m 1 can be awarded before or after the A1 above)
	Value of limit $=-\frac{1}{2}+\frac{p^{2}}{2}=4$.	A1	4	Must be convincingly obtained
	Total		14	

Q	Solution	Marks	Total	Comments
7(a)	Solving $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t} \quad\left({ }^{*}\right)$ Auxl. Eqn. $m^{2}-6 m+10=0$ $(m-3)^{2}+1=0$	M1		PI Completing sq or using quadratic formula to find m.
	$m=3 \pm i$	A1		
	CF ($\left.y_{\text {CF }}=\right)^{3 t}(A \cos t+B \sin t)$	M1		OE Condone x for t here; ft c 's 2 non-real values for ' m '.
	For PI try $\left(y_{\text {PI }}=\right) k \mathrm{e}^{2 t}$ $4 k-12 k+10 k=1 \Rightarrow k=\frac{1}{2}$	M1 A1		Condone x for t here
	GS of $(*)$ is $\left(y_{G S}=\right) \mathrm{e}^{3 t}(A \cos t+B \sin t)+\frac{1}{2} \mathrm{e}^{2 t}$	B1F	6	$\mathrm{CF}+\mathrm{PI}$ with 2 arb. constants and both CF and PI functions of t only
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d} y}{\mathrm{~d} t}$	M1		OE Chain rule
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x \frac{\mathrm{~d} y}{\mathrm{~d} t}$	A1		OE
	$\begin{aligned} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 x \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) & =(2 x) \frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)+2 \frac{\mathrm{~d} y}{\mathrm{~d} t} \\ & =(2 x)(2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t} \end{aligned}$	M1		$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}(\mathrm{f}(t))=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} t}(\mathrm{f}(t)) \text { OE } \\ & \mathrm{eg} \frac{\mathrm{~d}}{\mathrm{~d} t}(\mathrm{~g}(x))=\frac{\mathrm{d} x}{\mathrm{~d} t} \frac{\mathrm{~d}}{\mathrm{~d} x}(\mathrm{~g}(x)) \end{aligned}$
		m1		Product rule OE used dep on previous M1 being awarded at some stage
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}$	A1	5	CSO A.G.
(c)	$\begin{aligned} & t^{\frac{1}{2}}\left[4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}\right]-(12 t+1) 2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+40 t^{\frac{3}{2}} y=4 t^{\frac{3}{2}} \mathrm{e}^{2 t} \\ & 4 t^{\frac{3}{2}}\left\{\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y\right\}=4 t^{\frac{3}{2}} \mathrm{e}^{2 t} \end{aligned}$	M1		Subst. using (b) into given DE to eliminate all x
	$t \neq 0$ so divide by $4 t^{\frac{3}{2}}$ gives $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t}(*)$	A1	2	CSO A.G.
(d)	$y=\mathrm{e}^{3 x^{2}}\left(A \cos x^{2}+B \sin x^{2}\right)+\frac{1}{2} \mathrm{e}^{2 x^{2}}$	B1	1	OE Must include $y=$
	Total		14	

Q	Solution	Marks	Total	Comments
8(a)(i)	$r=\sin \frac{2 \pi}{3} \sqrt{\left(2+\frac{1}{2} \cos \frac{\pi}{3}\right)}=\frac{\sqrt{3}}{2} \times \sqrt{\frac{9}{4}}=\frac{3 \sqrt{3}}{4}$	M1; A1	2	
(ii)	$x=O N=(3 \sqrt{ } 3) / 8$ Polar eqn of $P N$ is $r \cos \theta=O N$	M1		
	$r=\frac{3 \sqrt{3}}{8} \sec \theta$	A1	2	AG Be convinced
(iii)	Area $\triangle O N P=0.5 \times r_{N} \times r_{P} \times \sin (\pi / 3)$	M1		OE With correct or ft from (a)(i) (ii), values for r_{P} and r_{N}.
	$=\frac{1}{2} \times \frac{3 \sqrt{3}}{8} \times \frac{3 \sqrt{3}}{4} \times \frac{\sqrt{3}}{2}=\frac{27 \sqrt{3}}{128}$	A1	2	Be convinced
(b)(i)	$\int \sin ^{n} \theta \cos \theta \mathrm{~d} \theta=\int u^{n} \mathrm{~d} u$	M1		PI
	$\begin{equation*} =\frac{\sin ^{n+1} \theta}{n+1} \tag{+c} \end{equation*}$	A1	2	
(ii)	Area of shaded region bounded by line $O P$ and $\operatorname{arc} O P=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin ^{2} 2 \theta\left(2+\frac{1}{2} \cos \theta\right) \mathrm{d} \theta$	M1 B1		Use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$
				Correct limits
	$\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1-\cos 4 \theta) \mathrm{d} \theta+\frac{1}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 4 \sin ^{2} \theta \cos ^{2} \theta \cos \theta \mathrm{~d} \theta$	M1		$2 \sin ^{2} 2 \theta= \pm 1 \pm \cos 4 \theta$
		B1		$\sin ^{2} 2 \theta \cos \theta=4 \sin ^{2} \theta \cos ^{2} \theta \cos \theta$
	$\left.\left[\begin{array}{ll}\theta & \sin 4 \theta\end{array}\right]^{\frac{\pi}{2}}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$	A1		Correct integration of $0.5(1-\cos 4 \theta)$
	$=\left[\frac{-1}{2}-\frac{1}{8}\right]_{\frac{\pi}{3}}+\int_{\frac{\pi}{3}}^{2}\left(\sin ^{2} \theta-\sin ^{4} \theta\right) \cos \theta \mathrm{d} \theta$	m1		Writing $2^{\text {nd }}$ integrand in a suitable form to be able to use (b)(i) OE PI
	$\left[\begin{array}{llll}\theta & \sin 4 \theta & \sin ^{3} \theta & \sin ^{5} \theta\end{array}\right]^{\frac{\pi}{2}}$	A1		Last two terms OE
	$=\left[\frac{\overline{2}}{2}-\frac{8}{3}+\frac{5}{\frac{\pi}{3}}\right.$			
	$=\frac{\pi}{12}-\frac{21 \sqrt{3}}{160}+\frac{2}{15}$	A1	8	CSO
	Total		16	
	TOTAL		75	

General Certificate of Education (A-level) June 2013

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & k_{1}=0.2 \times(2-1) \sqrt{2+1} \quad(=0.2 \sqrt{ } 3) \\ &=0.346(410 \ldots) \quad(=*) \\ & k_{2}=0.2 \times \mathrm{f}(2.2,1+* \ldots) \\ &= 0.2 \times(2.2-1.346 \ldots) \sqrt{2.2+1.346 \ldots} \\ & \ldots=0.321(4946 \ldots) \\ & y(2.2)=y(2)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\ &=1+0.5 \times[0.3464 \ldots+0.3214 \ldots] \\ &=1+0.5 \times 0.667904 \ldots \\ &(=1.33395 \ldots)=1.334 \text { to } 3 \mathrm{dp} \end{aligned}$	M1 M1 A1 m1 A1	5	PI. May be seen within given formula. Accept 3dp or better as evidence of the M1 line. $0.2 \times\left(2.2-1-c^{\prime} \mathrm{s} k_{1}\right) \sqrt{\left(2.2+1+\mathrm{c}^{\prime} \mathrm{s} k_{1}\right)}$ PI May be seen within given formula. 3dp or better. PI by later work Dep on previous two Ms but ft on c's numerical values for k_{1} and k_{2} following evaluation of these. CAO Must be 1.334 SC Any consistent use of a MR/MC of printed $\mathrm{f}(x, y)$ expression in applying IEF, mark as SC2 for a correct ft final 3dp value otherwise SC 0 .
	Total		5	
2	$\begin{aligned} & (x+8)^{2}+(y-6)^{2}=100 \\ & x^{2}+y^{2}+16 x-12 y+64+36(=100) \end{aligned}$ $r^{2}+16 r \cos \theta-12 r \sin \theta=0$ $\{r=0$, origin $\}$ Circle: $r=12 \sin \theta-16 \cos \theta$	B1 M1M1 A1	4	OE If polar form before expn of brackets award the B1 for correct expansions of both $(r \cos \theta-m)^{2}$ and $(r \sin \theta-n)^{2}$ where $(m, n)=(-8,6)$ or $(m, n)=(6,-8)$ $1^{\text {st }} \mathrm{M} 1$ for replacement using any one of $\left\{\left[x^{2}+y^{2}=r^{2}, x=r \cos \theta, y=r \sin \theta\right](*)\right\}$ $2^{\text {nd }}$ M1 for use of $\left(^{*}\right)$ to convert the form $x^{2}+y^{2}+a x+b y=0$ correctly to the form $r^{2}+a r \cos \theta+b r \sin \theta=0$ or better
	Total		4	

Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d}}{\mathrm{~d} x}[\ln (\ln x)]=\frac{1}{\ln x} \times \frac{1}{x}$	B1	1	ACF
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x \ln x} y=9 x^{2}$			
	An IF is $\exp \left\{\int[1 /(x \ln x)](\mathrm{d} x)\right\}$	M1		\ldots. and with integration attempted
	$=\mathrm{e}^{\ln (\ln x)}=\ln x$	A1	2	AG Must see $\mathrm{e}^{\ln (\ln x)}$ before $\ln x$
(ii)	$\begin{aligned} & \ln x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{1}{x} y=9 x^{2} \ln x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}[y \ln x]=9 x^{2} \ln x \end{aligned}$	M1		LHS as differential of $y \times \ln x \quad$ PI
	$y \ln x=\int 9 x^{2} \ln x d x$	A1		
	$=3 x^{3} \ln x-\int 3 x^{3}\left(\frac{1}{x}\right) \mathrm{d} x$	m1		$\int k x^{2} \ln x(\mathrm{~d} x)=p x^{3} \ln x-\int p x^{3}\left(\frac{1}{x}\right)(\mathrm{d} x)$ or better
	$y \ln x=3 x^{3} \ln x-x^{3}(+c)$	A1		ACF Condone missing ' $+c$ '
	When $x=\mathrm{e}, y=4 \mathrm{e}^{3}, 4 \mathrm{e}^{3}=3 \mathrm{e}^{3}-\mathrm{e}^{3}+c$ $c=2 \mathrm{e}^{3}$	m1		Dep on previous M1m1. Boundary condition used in attempt to find value of ' c ' after integration is completed
	$\begin{aligned} & \Rightarrow y \ln x=3 x^{3} \ln x-x^{3}+2 \mathrm{e}^{3} \\ & y=3 x^{3}-\frac{\left(x^{3}-2 \mathrm{e}^{3}\right)}{\ln x} \end{aligned}$	A1	6	ACF
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & y=(4+\sin x)^{1 / 2} \text { so } y^{2}=4+\sin x \\ & 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cos x \\ & y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \cos x \end{aligned}$	M1 A1	2	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
(a)	Altn $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}(4+\sin x)^{-1 / 2}(\cos x) \\ & y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \cos x \end{aligned}$	(M1) (A1)	(2)	Chain rule
(b)	$y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=-\frac{1}{2} \sin x$ When $x=0, y=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{4}, 2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{1}{4}\right)^{2}=0$	M1 A1F		Correct differentiation of $y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ Ft on RHS of M1 line as $k \sin x$
	$y \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{2} \cos x$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$		Correct LHS
	When $x=0,2 \frac{\mathrm{~d}^{3} y}{\mathrm{dx} x^{3}}+3\left(\frac{1}{4}\right)\left(-\frac{1}{32}\right)=-\frac{1}{2} \Rightarrow \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{61}{256}$	A1	5	CSO
(b)	Altn $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{4}(4+\sin x)^{-3 / 2}\left(\cos ^{2} x\right)+\frac{1}{2}(4+\sin x)^{-1 / 2}(-\sin x)$	(M1) (A1)		Sign and numerical coeffs errors only. ACF
	$\begin{aligned} \frac{\mathrm{d}^{3} y}{\mathrm{dx} x^{3}}= & \frac{3}{8}(4+\sin x)^{-2.5}\left(\cos ^{3} x\right)-\frac{1}{4}(4+\sin x)^{-1.5}(-2 \cos x \sin x) \\ & -\frac{1}{4}(4+\sin x)^{-1.5}(\cos x)(-\sin x)-\frac{1}{2}(4+\sin x)^{-0.5} \cos x \end{aligned}$	(m1) (A1)		Sign and numerical coeffs errors only. ACF
	When $x=0, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=\frac{3}{8} \times \frac{1}{32}-\frac{1}{2} \times\left(\frac{1}{2}\right)=-\frac{61}{256}$	(A1)	(5)	CSO
(c)	McC. Thm: $y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0)+\frac{x^{3}}{3!} y^{\prime \prime \prime}(0)$	M1		Maclaurin's theorem used with c's numerical values for $y(0), y^{\prime}(0), y^{\prime \prime}(0)$ and $y^{\prime \prime \prime}(0)$, all found with at least three being non-zero
	$(4+\sin x)^{1 / 2} \approx 2+\frac{1}{4} x-\frac{1}{64} x^{2}-\frac{61}{1536} x^{3} \ldots . .$	A1	2	CSO Previous 6 marks must have been scored
	Total		9	

AQA

A-LEVEL

MATHEMATICS

Further Pure 3 - MFP3
Mark scheme

6360
June 2014

Version/Stage: v1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1	DO NOT ALLOW ANY MISREADS IN $\begin{aligned} & k_{1}=0.4\left[\frac{\ln (6+3)}{\ln 3}\right] \quad(=0.8) \\ & k_{2}=0.4 \times \mathrm{f}\left(6.4,3+k_{1}\right) \\ &=0.4 \times \frac{\ln (6.4+3.8)}{\ln 3.8} \\ & k_{2}=0.4 \times 1.7396 \ldots=0.6958(459 \ldots) \\ & y(6.4)=y(6)+\frac{1}{2}\left[k_{1}+k_{2}\right] \\ &=3+\frac{1}{2}[0.8+0.6958(459 \ldots)] \\ &(=3.747922975 \ldots)=3.748 \quad(\text { to } 3 \mathrm{dp}) \end{aligned}$	HIS Q M1 M1 A1 m1 A1	ESTIO 5	PI. May be seen within given formula $0.4 \times \frac{\ln \left(6+0.4+3+\mathrm{c}^{\prime} \mathrm{s} k_{1}\right)}{\ln \left(3+\mathrm{c}^{\prime} \mathrm{s} k_{1}\right)}$ PI. May be seen within given formula 0.696 or better. PI by later work $3+\frac{1}{2}\left[\mathrm{c}^{\prime} \mathrm{s} k_{1}+\mathrm{c}^{\prime} \mathrm{s} k_{2}\right]$ but dependent on previous two Ms scored. PI by 3.748 or 3.7479.... CAO Must be 3.748
	Total		5	

Q	Solution	Mark	Total	Comment
2(a)	$\begin{aligned} & y=a+b \sin 2 x+c \cos 2 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 b \cos 2 x-2 c \sin 2 x \end{aligned}$	B1		Correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	$\begin{aligned} & 2 b \cos 2 x-2 c \sin 2 x+4(a+b \sin 2 x+c \cos 2 x) \\ & (=20-20 \cos 2 x) \end{aligned}$	M1		Differentiation and substitution into LHS of DE
	$4 a=20 ; 4 b-2 c=0 ; 2 b+4 c=-20$	m1		Equating coefficients OE to form 3 equations at least two correct. PI by next line
	$a=5, b=-2, c=-4$	A1	4	
(b)	Aux. eqn. $m+4=0$	M1		PI Or solving $y^{\prime}(x)+4 y=0$ as far as $y=A e^{ \pm 4 x}$ OE
	($\left.y_{\text {CF }}=\right) A \mathrm{e}^{-4 x}$	A1		OE
	$\left(y_{G S}=\right) A \mathrm{e}^{-4 x}+5-2 \sin 2 x-4 \cos 2 x$	B1F		c's CF + c's PI with exactly one arbitrary constant
	$\begin{aligned} & \text { When } x=0, y=4 \Rightarrow A=3 \\ & y=3 \mathrm{e}^{-4 x}+5-2 \sin 2 x-4 \cos 2 x \end{aligned}$	A1	4	$y=3 \mathrm{e}^{-4 \mathrm{x}}+5-2 \sin 2 x-4 \cos 2 x$ ACF
	Total		8	

Q	Solution	Mark	Total	Comment
$\mathbf{3}$	$4 r-3 x=4$			
	$4 r=3 x+4$			
	$16 r^{2}=(3 x+4)^{2}$	M1		$x=r \cos \theta$ used $4 r=3 x+4$
	$16\left(x^{2}+y^{2}\right)=(3 x+4)^{2}$			
$y^{2}=\frac{16+24 x-7 x^{2}}{16}$	M1		$x^{2}+y^{2}=r^{2}$ used Must be in form $y^{2}=\mathrm{f}(x)$ but accept ACF for $\mathrm{f}(x)$ eg $y^{2}=\frac{(4+7 x)(4-x)}{16}$	
		A1	$\mathbf{4}$	

Q	Solution	Mark	Total	Comment
4	Aux eqn $m^{2}-2 m-3=0$ $\begin{aligned} & (m-3)(m+1)=0 \\ & \left(y_{C F}=\right) A \mathrm{e}^{-x}+B \mathrm{e}^{3 x} \end{aligned}$ Try ($y_{P I}=$) $a x \mathrm{e}^{-x}$ $\begin{aligned} & \left(y_{P I}^{\prime}=\right) a \mathrm{e}^{-x}-a x \mathrm{e}^{-x} \\ & \left(y_{P I}^{\prime \prime}=\right)-2 a \mathrm{e}^{-x}+a x \mathrm{e}^{-x} \\ & -2 a \mathrm{e}^{-x}+a x \mathrm{e}^{-x}-2\left(a \mathrm{e}^{-x}-a x \mathrm{e}^{-x}\right)-3 a x \mathrm{e}^{-x} \\ & \left(=2 \mathrm{e}^{-x}\right) \end{aligned}{ }^{\Rightarrow-4 a=2 \Rightarrow a=-\frac{1}{2}} \begin{aligned} & \left(y_{G S}=\right) A \mathrm{e}^{-x}+B \mathrm{e}^{3 x}-\frac{1}{2} x \mathrm{e}^{-x} \end{aligned}$ As $x \rightarrow \infty, x \mathrm{e}^{-x} \rightarrow 0 \quad$ (and $\mathrm{e}^{-x} \rightarrow 0$) $\begin{aligned} & y \rightarrow 0 \text { so } B=0 \\ & \left(y^{\prime}(x)=-A \mathrm{e}^{-x}-0.5 \mathrm{e}^{-x}+0.5 x \mathrm{e}^{-x}\right) \\ & \left(y^{\prime}(0)=-3 \Rightarrow-3=-A-0.5 \Rightarrow A=2.5\right) \\ & y=\frac{5}{2} \mathrm{e}^{-x}-\frac{1}{2} x \mathrm{e}^{-x} \end{aligned}$	M1 A1 M1 M1 m1 A1 B1F E1 B1 B1	10	Correctly factorising or using quadratic formula OE for relevant Aux eqn. PI by correct two values of ' m ' seen/used. Product rule OE used to differentiate $x \mathrm{e}^{-x}$ in at least one derivative, giving terms in the form $\pm \mathrm{e}^{-x} \pm x \mathrm{e}^{-x}$ Subst. into LHS of DE A0 if terms in $x \mathrm{e}^{-x}$ were incorrect in m 1 line ($\left.y_{G S}=\right)$ c's CF + c's PI, must have exactly two arbitrary constants As $x \rightarrow \infty$, $x \mathrm{e}^{-x} \rightarrow 0$ OE. Must be treating $x \mathrm{e}^{-x}$ term separately $B=0$, where B is the coefficient of $\mathrm{e}^{3 x}$ $y=\frac{5}{2} \mathrm{e}^{-x}-\frac{1}{2} x \mathrm{e}^{-x} \text { OE }$
	Total		10	

Q	Solution	Mark	Total	Comment
5(a)	$\ldots=x\left(\frac{1}{8} \sin 8 x\right)-\int \frac{1}{8} \sin 8 x(\mathrm{~d} x)$	M1 A1		$\begin{aligned} & k x \sin 8 x-\int k \sin 8 x(\mathrm{~d} x), \text { with } k=1,-1, \\ & 8,-8,1 / 8 \text { or }-1 / 8 \\ & x\left(\frac{1}{8} \sin 8 x\right)-\int \frac{1}{8} \sin 8 x(\mathrm{~d} x) \end{aligned}$
	$=x\left(\frac{1}{8} \sin 8 x\right)+\frac{1}{64} \cos 8 x(+c)$	A1	3	
(b)	$\left[\frac{1}{x} \sin 2 x\right]=\frac{2 x+O\left(x^{3}\right)}{x}$	M1		$\sin 2 x \approx 2 x$ Ignore higher powers of x. PI by answer 2 .
	$\ldots=\lim _{x \rightarrow 0}\left[2+O\left(x^{2}\right)\right]=2$	A1	2	CSO Must see correct intermediate step
(c)	$2 \cot 2 x$ and $1 / x$ are not defined at $x=0$	E1	1	Only need to use one of the two terms. Condone 'Integrand not defined at lower limit' OE
(d)	$\left(\int\left(2 \cot 2 x-x^{-1}+x \cos 8 x\right) d x=\right)$			
	$\ln \sin 2 x-\ln x+x\left(\frac{1}{8} \sin 8 x\right)+\frac{1}{64} \cos 8 x$	B1F		Ft c's answer to part (a) ie $\ln \sin 2 x-\ln x+$ c's answer to part (a)
	$\int_{0}^{\frac{\pi}{4}}(\ldots) \mathrm{d} x=\lim _{a \rightarrow 0} \int_{a}^{\frac{\pi}{4}}(\ldots) \mathrm{d} x$	M1		Limit 0 replaced by $a(\mathrm{OE})$ and $\underset{a \rightarrow 0}{\lim }$ seen or taken at any stage with no remaining lim relating to $\pi / 4$.
	$\begin{aligned} & \int_{0}^{\frac{\pi}{4}}(\ldots) \mathrm{d} x=\left[\frac{x \sin 8 x}{8}+\frac{\cos 8 x}{64}\right]_{0}^{\pi / 4}+\ln 1- \\ & \ln (\pi / 4)-\lim _{a \rightarrow 0}\left[\ln \left(\frac{\sin 2 a}{a}\right)\right] \end{aligned}$			$\lim _{a \rightarrow 0}\left[\ln \left(\frac{\sin 2 a}{a}\right)\right]$
	$=\frac{1}{64}-\frac{1}{64}-\ln \left(\frac{\pi}{4}\right)-\lim _{a \rightarrow 0}\left[\ln \left(\frac{\sin 2 a}{a}\right)\right]$	M1		$\mathrm{F}(\pi / 4)-\mathrm{F}(0)$, with $\ln [(\sin 2 x) / x]$ a term in $\mathrm{F}(x)$, and at least all non \ln terms evaluated
	$=-\ln \left(\frac{\pi}{4}\right)-\ln 2=-\ln \left(\frac{\pi}{2}\right)$	A1	4	OE single term in exact form, eg $\ln \left(\frac{2}{\pi}\right)$.
	Total		10	
(a)	Example: $u=x, v^{\prime}=\cos 8 x ; u^{\prime}=1, v=\frac{1}{8} \sin 8 x$ and $\ldots=u v-\int v u^{\prime}$ all seen and substitution into $u v-\int v u^{\prime}$ with no more than one miscopy, award the M1			

Q	Solution	Mark	Total	Comment
6(a) (b) (c)	IF is $\mathrm{e}^{\int-\frac{2 x}{x^{2}+4} \mathrm{dx}}$ $\begin{aligned} & =\mathrm{e}^{-\ln \left(x^{2}+4\right)(+c)}=\mathrm{e}^{\ln \left(x^{2}+4\right)^{-1}(+c)} \\ & =(A)\left(x^{2}+4\right)^{-1} \end{aligned}$ $\begin{aligned} & \frac{1}{\left(x^{2}+4\right)} \frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{2 x}{\left(x^{2}+4\right)^{2}} u=3 \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\left(x^{2}+4\right)^{-1} u\right]=3 \\ & \left(x^{2}+4\right)^{-1} u=3 x(+C) \end{aligned}$ $(\mathrm{GS}): \quad u=(3 x+C)\left(x^{2}+4\right)$ $\begin{aligned} & u=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { so } \frac{\mathrm{d} u}{\mathrm{~d} x}=x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & x^{2}\left(x^{2}+4\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+8 x \frac{\mathrm{~d} y}{\mathrm{~d} x}= \\ & \left.=\left(x^{2}+4\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right]+8 x \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & =\left(x^{2}+4\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & =\left(x^{2}+4\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x u \end{aligned}$ Given DE becomes: $\begin{aligned} & \left(x^{2}+4\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x u=3\left(x^{2}+4\right)^{2} \\ & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}-\frac{2 x}{x^{2}+4} u=3\left(x^{2}+4\right) \end{aligned}$ From (a), $u=(3 x+C)\left(x^{2}+4\right)$ So $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3 x+C)\left(x^{2}+4\right)}{x^{2}}$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12}{x}+\frac{4 C}{x^{2}}+3 x+C \\ & y=12 \ln x-\frac{4 C}{x}+\frac{3 x^{2}}{2}+C x+D \end{aligned}$	M1 A1 A1F M1 A1 A1 M1 A1 m1 A1 M1 A1	6	PI With or without the negative sign Either O.E. Condone missing ' $+c$ ' Ft on earlier $\mathrm{e}^{\lambda \ln \left(x^{2}+4\right)}$, condone missing A LHS as $\mathrm{d} / \mathrm{d} x(u \times \mathrm{c}$'s IF) PI Condone missing ' $+C$ ' here. Must be in the form $u=\mathrm{f}(x)$, where $\mathrm{f}(x)$ is ACF $\frac{\mathrm{d} u}{\mathrm{~d} x}= \pm x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \pm p x \frac{\mathrm{~d} y}{\mathrm{~d} x}, \quad p \neq 0$ Substitution into LHS of DE and correct ft simplification as far as no y 's present. CSO AG $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{c}^{\prime} \mathrm{f}(x) \text { answer to part (a) }}{x^{2}}$ stated or used OE
	Total		12	
(b)	Altn: $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{ \pm x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x} \pm p x u}{\left(x^{2}\right)^{2}}, p \neq 0$ (M1)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=$	$\frac{\frac{\mathrm{d} u}{\mathrm{~d} x}-2}{\left(x^{2}\right)^{2}}$	- (A1)

Q	Solution	Mark	Total	Comment
7(a)(i)	$y=\ln (\cos x+\sin x), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-\sin x+\cos x}{\cos x+\sin x}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule OE (sign errors only) ACF eg $\mathrm{e}^{y} y^{\prime}(x)=\cos x-\sin x$
	$y^{\prime \prime}=\frac{-(\cos x+\sin x)^{2}-(-\sin x+\cos x)^{2}}{(\cos x+\sin x)^{2}}$	m1		Quotient rule (sign errors only) OE eg $\mathrm{e}^{y}\left[y^{\prime}\right]^{2}+\mathrm{e}^{y} y^{\prime \prime}= \pm \cos x \pm \sin x$
	$\begin{aligned} & =\frac{-2\left(\cos ^{2} x+\sin ^{2} x\right)}{(\cos x+\sin x)^{2}}=\frac{-2}{1+2 \cos x \sin x} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{2}{1+\sin 2 x} \\ & \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=4(1+\sin 2 x)^{-2} \cos 2 x \end{aligned}$	A1 B1	4	CSO AG Completion must be convincing ACF for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$
(b)(i)	$y(0)=0 ; y^{\prime}(0)=1 ; y^{\prime \prime}(0)=-2 ; y^{\prime \prime \prime}(0)=4$	B1F		Ft only for $y^{\prime}(0)$ and $y^{\prime \prime \prime}(0)$
	$y(x) \approx y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0)+\frac{x^{3}}{3!} y^{\prime \prime \prime}(0)$	M1		Maclaurin's theorem applied with numerical vals. for $y^{\prime}(0), y^{\prime \prime}(0)$ and $y^{\prime \prime \prime}(0)$. M0 if cand is missing an expression OE for the $1^{\text {st }}$ or $3^{\text {rd }}$ derivatives
	$y(x) \approx x-\frac{2}{2} x^{2}+\frac{4}{6} x^{3}=x-x^{2}+\frac{2}{3} x^{3}$	A1	3	CSO AG Dep on all previous 7 marks awarded with no errors seen.
(b)(ii)	$\ln (\cos x-\sin x) \approx-x-x^{2}-\frac{2}{3} x^{3}$	B1	1	$-x-x^{2}-\frac{2}{3} x^{3}$
(c)	$\ln \left(\frac{\cos 2 x}{\mathrm{e}^{3 x-1}}\right)=\ln \cos 2 x-(3 x-1)$	B1		
	$\begin{aligned} & \ln (\cos 2 x)=\ln [(\cos x+\sin x)(\cos x-\sin x)] \\ & =\ln (\cos x+\sin x)+\ln (\cos x-\sin x) \\ & \ln \left(\frac{\cos 2 x}{\mathrm{e}^{3 x-1}}\right) \approx \end{aligned}$	B1		
	$\begin{aligned} & \approx x-x^{2}+\frac{2}{3} x^{3}-x-x^{2}-\frac{2}{3} x^{3}-3 x+1 \\ & \approx 1-3 x-2 x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	CSO Must have used 'Hence’
	Total		13	
(a)(i)	For guidance, working towards AG may inc	ude $y^{\prime \prime}=$	$-1-\left[y^{\prime}\right]^{2}$	

Q	Solution	Mark	Total	Comment
8(a)	$\text { (Area }=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(1-\tan ^{2} \theta\right)^{2} \sec ^{2} \theta(\mathrm{~d} \theta)$	M1		Use of $\frac{1}{2} \int r^{2}(\mathrm{~d} \theta)$ or use of $\int_{0}^{\frac{\pi}{4}} r^{2}(\mathrm{~d} \theta)$ OE
	(or) $\int_{0}^{\frac{\pi}{4}}\left(1-\tan ^{2} \theta\right)^{2} \sec ^{2} \theta(\mathrm{~d} \theta)$	B1		Correct limits
	Let $u=\tan \theta$ so $($ Area $)=\int_{(0)}^{(1)}\left(1-u^{2}\right)^{2} \mathrm{~d} u$	M1		Valid method to integrate $\tan ^{n} \theta \sec ^{2} \theta$, $n=2$ or 4 , could be by inspection.
	$(\text { Area })=\left[u-\frac{2 u^{3}}{3}+\frac{u^{5}}{5}\right]_{0}^{1}$	A1		Correct integration of $k\left(1-\tan ^{2} \theta\right)^{2} \sec ^{2} \theta$ OE; ignore limits at this stage
	$=\left(1-\frac{2}{3}+\frac{1}{5}\right) \quad(-0)=\frac{8}{15}$	A1	5	CSO AG
(b) (i)	$\left(1-\tan ^{2} \theta\right) \sec \theta=\frac{1}{2} \sec ^{3} \theta$	M1		Elimination of r or $\theta . \quad\left[r=2(2 r)^{\frac{1}{3}}-2 r\right]$
	$\begin{aligned} & 1-\tan ^{2} \theta=\frac{1}{2}\left(1+\tan ^{2} \theta\right) \\ & \tan ^{2} \theta=\frac{1}{3} ; \quad \theta= \pm \frac{\pi}{6} ; \quad r=\frac{4}{3 \sqrt{3}} \end{aligned}$	m1		Using $1+\tan ^{2} \theta=\sec ^{2} \theta$ OE to reach a correct equation in one 'unknown'.
	Coordinates $\left(\frac{4}{3 \sqrt{3}}, \frac{\pi}{6}\right)\left(\frac{4}{3 \sqrt{3}},-\frac{\pi}{6}\right)$	A1	3	
(b) (ii)	$\frac{4}{3 \sqrt{3}} \sin \alpha=(1) \sin \left(\pi-\frac{\pi}{6}-\alpha\right) \mathrm{OE}$	B1F		OE eg $A P=\sqrt{\frac{7}{27}}$ or eg $\sin \alpha=\sqrt{\frac{27}{28}}$
	$\frac{4}{3 \sqrt{3}} \sin \alpha=\sin \frac{\pi}{6} \cos \alpha+\cos \frac{\pi}{6} \sin \alpha$	B1		Or $\cos \alpha=-\frac{1}{\sqrt{28}}\left(=-\frac{\sqrt{7}}{14}\right)$
	$\tan \alpha=\frac{-1 / 2}{\frac{\sqrt{3}}{2}-\frac{4}{3 \sqrt{3}}}$	M1		OE Valid method to reach an exact numerical expression for $\tan \alpha$.
	$\tan \alpha=-3 \sqrt{3} \quad(k=-3)$ Altn for the two B marks	A1	4	
	$O N=\frac{4}{3 \sqrt{3}} \cos \frac{\pi}{6} ; A N=\frac{4}{3 \sqrt{3}} \sin \frac{\pi}{6}$	(B1F)		OE Any two correct ft . PI eg $N P=1 / 3$ (N is foot of perp from A or B to $O P$)
	$\tan O P A=\frac{2}{\sqrt{3}}$	(B1)		$\tan O P A=\frac{2}{\sqrt{3}}$ OE or $\tan P A N=\frac{\sqrt{3}}{2}$ OE [Then (M1)(A1) as above]
(b)(iii)	Since $\tan \alpha$ is negative, α is obtuse so point A lies inside the circle. (If A was on the circle α would be a right angle.)	E1F	1	Ft c's sign of k.
	Total		13	
	TOTAL		75	
Altn (a)	Converts to Cartesian eqn. $y^{2}=x^{2}(1-x)$ (M1A1); sym of the curve (B1); valid method to integra	sets up a te $x(1-$	orrect int $)^{\frac{1}{2}}(\mathrm{M} 1) ;$	egral with correct limits for the area using the 8/15 obtained convincingly (A1)
(b)(ii) alt	Altn expressions for M1: $\tan \alpha=-\tan \left(\frac{\pi}{6}+\right.$	$O P A=$	$\frac{-\frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}}}{-\frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}}}$	$\tan \alpha=\tan \left(\frac{\pi}{3}+P A N\right)=\frac{\sqrt{3}+\frac{\sqrt{3}}{2}}{1-\sqrt{3} \frac{\sqrt{3}}{2}}$

A-LEVEL

Mathematics

Further Pure3 - MFP3
Mark scheme

6360
June 2015

Version/Stage: Final Mark Scheme V1

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q2	Solution	Mark	Total	Comment
	$\begin{aligned} & \text { I.F. } \mathrm{e}^{\int \tan x \mathrm{~d} x} \\ & =\mathrm{e}^{\ln \sec x}=\sec x \\ & \sec x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\sec x(\tan x) y=\tan ^{3} x \sec ^{2} x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}[y \sec x]=\tan ^{3} x \sec ^{2} x \end{aligned} y_{y \sec x=\int \tan ^{3} x \sec ^{2} x(\mathrm{~d} x)}^{y \sec x=\int t^{3} \mathrm{~d} t} \begin{aligned} & y \sec x=\frac{1}{4} \tan ^{4} x(+c) \\ & 2 \sec \frac{\pi}{3}=\frac{1}{4} \tan ^{4} \frac{\pi}{3}+c ; 4=\frac{9}{4}+c \\ & y \sec x=\frac{1}{4} \tan ^{4} x+\frac{7}{4} \\ & y=\frac{\cos x}{4}\left(7+\tan ^{4} x\right) \end{aligned}$	M1 A1 A1F M1 A1 m1 A1 m1 A1	9	OE eg $\mathrm{e}^{-\ln \cos x}$ OE Only ft sign error in integrating $\tan x$. LHS as $\frac{\mathrm{d}}{\mathrm{d} x}[y \times$ candidate's IF$]$ PI PI OE eg $y \sec x=\int\left(\frac{1}{u^{3}}-\frac{1}{u^{5}}\right) \mathrm{d} u$, where $u=\cos x$ Dep on prev MMm. Correct boundary condition applied to obtain an eqn in c with correct exact value for either $\sec \frac{\pi}{3}$ or $\tan ^{4} \frac{\pi}{3}$ used ACF
	Total		9	
	Condone answer left in a 'correct' form different to $y=\mathrm{f}(x)$, eg $4 y \sec x=\tan ^{4} x+7$.			

Q3	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} \ln (1+2 x) & =2 x-\frac{(2 x)^{2}}{2}+\frac{(2 x)^{3}}{3}-\frac{(2 x)^{4}}{4} \ldots \\ & =2 x-2 x^{2}+\frac{8}{3} x^{3}-4 x^{4} \ldots \end{aligned}$	B1	1	ACF Condone correct unsimplified
(a)(ii)	$\ln [(1+2 x)(1-2 x)]=\ln (1+2 x)+\ln (1-2 x)$	M1		$\begin{aligned} & \ln (1+2 x)+\ln (1-2 x) \text { PI } \\ & \left\{\text { or } \ln \left(1-4 x^{2}\right)=-4 x^{2}-\frac{\left(-4 x^{2}\right)^{2}}{2} \ldots\right\} \text { PI } \end{aligned}$
(b)	$\begin{array}{r} =-4 x^{2}-8 x^{4} \ldots \ldots \\ \text { Expansion valid for }-\frac{1}{2}<x<\frac{1}{2} \end{array}$	A1 B1	3	CSO Must be simplified Condone $\|x\|<\frac{1}{2}$
	$x \sqrt{9+x}=3 x\left[1+\frac{x}{18}+O\left(x^{2}\right)\right]$	B1		Correct first two terms in expn. of $\sqrt{9+x}$
	$\begin{aligned} & {\left[\frac{3 x-x \sqrt{9+x}}{\ln [(1+2 x)(1-2 x)]}\right]=\left[\frac{3 x-3 x-\frac{3 x^{2}}{18} \ldots}{-4 x^{2}-8 x^{4} \ldots}\right]} \\ & \lim _{x \rightarrow 0}\left[\frac{3 x-x \sqrt{9+x}}{\ln [(1+2 x)(1-2 x)]}\right] \end{aligned}$	M1		Series expansions used in both numerator and denominator.
	$=\lim _{x \rightarrow 0}\left[\frac{-\frac{1}{6}+O(x)}{-4+O\left(x^{2}\right)}\right]$	m1		Dividing numerator and denominator by x^{2} to get constant term in each, leading to a finite limit. Must be at least a total of 3 'terms' divided by x^{2}
	$=\frac{1}{24}$	A1	4	$=\frac{1}{24} \text { NOT } \rightarrow \frac{1}{24}$
	Total		8	

Q4	Solution	Mark	Total	Comment
	The interval of integration is infinite	E1	1	OE
(b)	$\int(x-2) \mathrm{e}^{-2 x} \mathrm{~d} x$			
	$u=x-2, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{-2 x}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=1, v=-0.5 \mathrm{e}^{-2 x}$	M1		$\frac{\mathrm{d} u}{\mathrm{~d} x}=1, \quad v=k \mathrm{e}^{-2 x} \text { with } k= \pm 0.5, \pm 2$
	$\ldots . .=-\frac{1}{2}(x-2) \mathrm{e}^{-2 x}-\int-\frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x$	A1		$-\frac{1}{2}(x-2) \mathrm{e}^{-2 x}-\int-\frac{1}{2} \mathrm{e}^{-2 x}(\mathrm{~d} x)$ OE
	$=-\frac{1}{2}(x-2) \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}(+c)$	A1		
	$\int_{2}^{\infty}(x-2) \mathrm{e}^{-2 x} \mathrm{~d} x=\lim _{a \rightarrow \infty} \int_{2}^{a}(x-2) \mathrm{e}^{-2 x} \mathrm{~d} x$	M1		Evidence of limit ∞ having been replaced by $a(\mathrm{OE})$ at any stage and $\lim _{a \rightarrow \infty}$ seen or taken at any stage with no remaining lim relating to 2 .
	$\lim _{a \rightarrow \infty}\left[-\frac{1}{2}(a-2) \mathrm{e}^{-2 a}-\frac{1}{4} \mathrm{e}^{-2 a}\right]-\left(-\frac{1}{4} \mathrm{e}^{-4}\right)$			
	Now $\lim _{a \rightarrow \infty} a^{p} \mathrm{e}^{-2 a}=0, \quad(p>0)$	E1		General statement or specific statement with $p=1$ stated explicitly. Each must include the 2 in the exponential.
	$\int_{2}^{\infty}(x-2) \mathrm{e}^{-2 x} \mathrm{~d} x=\frac{1}{4} \mathrm{e}^{-4}$	A1	6	No errors seen in $\mathrm{F}(a)-\mathrm{F}(2)$. (M1E0A1 is possible)
	Total		7	

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & \text { Aux eqn } m^{2}+6 m+9=0 \\ & (m+3)^{2}=0 \end{aligned}$	M1		Factorising or using quadratic formula OE on correct aux eqn. PI by correct value of ' m ' seen/used.
	$\left(y_{C F}=\right)(A x+B) \mathrm{e}^{-3 x}$	A1		
	$\begin{aligned} & \text { Try }\left(y_{P I}=\right) a \sin 3 x+b \cos 3 x \\ & \left(y_{P I}^{\prime}=\right) 3 a \cos 3 x-3 b \sin 3 x \\ & \left(y_{P I}^{\prime \prime}=\right)-9 a \sin 3 x-9 b \cos 3 x \end{aligned}$	M1		$a \sin 3 x+b \cos 3 x$ or Altn. $k \cos 3 x$
	$\begin{aligned} & -9 a \sin 3 x-9 b \cos 3 x+6(3 a \cos 3 x-3 b \sin 3 x) \\ & +9(a \sin 3 x+b \cos 3 x)=36 \sin 3 x \end{aligned}$	m1		Substitution into DE, dep on previous M and differentiations being in form $p \cos 3 x+q \sin 3 x$ or Altn. $-3 k \sin 3 x$ and $-9 k \cos 3 x$
	$-18 b=36 \quad 18 a=0$	A1		Seen or used
	$y_{P I}=-2 \cos 3 x$	A1		Correct $y_{\text {PI }}$ seen or used
	$\left(y_{G S}=\right)(A x+B) e^{-3 x}-2 \cos 3 x$	B1F	7	($y_{G S}=$) c's CF + c's PI, must have exactly two arbitrary constants
(b)(i)	$\begin{aligned} & f^{\prime \prime}(0)+6 f^{\prime}(0)+9 f(0)=36 \sin 0 \\ & f^{\prime \prime}(0)+6(0)+9(0)=0 \quad \Rightarrow f^{\prime \prime}(0)=0 \end{aligned}$	E1	1	AG Convincingly shown with no errors.
(b)(ii)	$\begin{aligned} & \mathrm{f}^{\prime \prime \prime}(0)=108 \cos 0-0-0=108 \\ & \mathrm{f}^{(i v)}(0)=0-6 \mathrm{f}^{\prime \prime \prime}(0)-0=-648 \end{aligned}$	B1		$\mathrm{f}^{\prime \prime \prime}(0)=108 \text { and } \mathrm{f}^{(\mathrm{iv})}(0)=-648 \text { seen or used }$
	$\begin{aligned} & \mathrm{f}(x) \approx 0+x(0)+\frac{x^{2}}{2}(0)+\frac{x^{3}}{3!} \mathrm{f}^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} \mathrm{f}^{\mathrm{fiv}}(0) \ldots \\ & \mathrm{f}(x) \approx \frac{x^{3}}{3!}(108)+\frac{x^{4}}{4!}(-648) \ldots \end{aligned}$	M1		$f(x) \approx \frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} f^{(i)}(0)$ used with c's non-zero values for $\mathrm{f}^{\prime \prime \prime}(0)$ and $\mathrm{f}^{(\mathrm{iv})}(0)$
	$=18 x^{3}-27 x^{4}$	A1	3	$18 x^{3}-27 x^{4}$ Ignore any extra higher powers of x terms
	Altn: Use of answer to part (a) $f(x)=(6 x+2) e^{-3 x}-2 \cos 3 x$	[B1]		
	$=$	[M1]		Correct series for $\mathrm{e}^{-3 x}$ (at least from x^{2} terms up to x^{4} terms inclusive) and $\cos 3 x$ (at least x^{2} terms and x^{4} terms) substituted and also product of $(p x+q)$ term with $\mathrm{e}^{-3 x}$ series attempted where p and q are numbers.
	$\begin{gathered} =(2-2)+(6-6) x+(9-18+9) x^{2}+(27-9) x^{3}+ \\ =18 x^{3}-27 x^{4} \quad+(6.75-27-6.75) x^{4} \end{gathered}$	[A1]	[3]	
	Total		11	
	If using (a) to answer (b)(i), for guidance, $\mathrm{f}^{\prime \prime}(x)=54 x \mathrm{e}^{-3 x}-18 \mathrm{e}^{-3 x}+18 \cos 3 x$			

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

[^1]: Set and published by the Assessment and Qualifications Alliance.

